Tag Archive for: Seltene Erden

Magnete – wer kennt sie nicht. Harte, dunkle Gegenstände, scheinbar weder ganz Stein noch ganz Metall, von welchen geheimnisvolle Kräfte ausgehen. Schon in meiner frühen Kindheit waren sie nicht aus dem Spielzimmer weg zu denken – hielten sie doch die Waggons meiner Holzeisenbahn zusammen, und ermöglichten einem Kleinkind dennoch, den Zug nach Belieben wieder auseinander zu nehmen.

Noch spannender fand ich dereinst jedoch, die Waggons mit den „falschen“ Enden zueinander auf die Gleise zu stellen und einen auf den anderen zuzuschieben, sodass der zweite Waggon wie von Geisterhand vor dem ersten zurückwich…

In der Welt der Grossen sind hingegen Kühlschrankmagnete nicht wegzudenken, oder ebensolche im Büro oder der Schule am Whiteboard. Oder als praktische Scheibenwischer in einer gläsernen Hermetosphäre. Oder…Verwendung für Magnete gibt es in zahllosen Varianten. Und wer zwei davon aufeinander zu bewegt, kann die geheimnisvolle Abstossung spüren, die ich schon als Kind an der Holzeisenbahn beobachten konnte.

Seit meiner Kinderzeit hat sich überdies die Erscheinung mancher Magnete geändert. Sie scheinen kleiner geworden zu sein – und ihre Kräfte gleichzeitig stärker, und häufig schimmern sie metallisch silbern. „Supermagnete“ werden diese Kraftpakete oft genannt, und aus seltenen Erden sollen sie bestehen.

Doch wie und wo entstehen die mysteriösen Kräfte der Magnete eigentlich? Was ist „Magnetismus“? Was hat Magnetismus mit Strom zu tun? Welche Stoffe sind magnetisch? Warum sind Supermagnete so stark? Und wie kann ein Supraleiter über einem Magneten schweben?

 

Was hinter den Kräften steckt

Hast du zwei Magnete zur Hand? Oder einen Magnet und ein Stück Eisen? Wenn du beide langsam aufeinander zu bewegst, wirst du schnell feststellen, dass die geheimnisvollen Magnet-Kräfte umso stärker werden, je näher das eine dem anderen kommt. Irgendetwas ist also im Raum um den Magnet herum, das ein Stück Eisen zu ihm hin zieht – und zwar immer schneller, je näher es dem Magnet kommt. Die Physiker nennen dieses Etwas Magnetfeld.

Was ist ein Magnetfeld?

Ein „Feld“ nennen die Physiker die räumliche Verteilung einer physikalischen Grösse. Das heisst, diese Grösse hat an jedem Punkt in einem Raum einen bestimmten Wert – das Feld ist die Gesamtheit dieser Werte. Würde man draussen, wenn es kalt ist, ein Lagerfeuer entzünden und an jedem Punkt in der Umgebung die Temperatur messen, könnte man die gesammelten Werte zu einem Temperaturfeld zusammenfassen und seine „Gestalt“ beschreiben: Je näher ein Punkt im Temperaturfeld am Feuer liegt, desto höher wird die Temperatur sein.

Neben solch einfachen Grössen wie der Temperatur (Mathematiker nennen solche Grössen „skalar“) gibt es andere physikalische Grössen, die neben ihrem Wert auch eine Richtung haben (solch eine Grösse nennen die Mathematiker „Vektor“): Die Schwerkraft bewegt Gegenstände überall auf und über der Erde nach „unten“, das heisst in Richtung Erdmittelpunkt, ein Zug fährt mit einer bestimmten Geschwindigkeit geradeaus (während die Geschwindigkeit des gleichschnellen Gegenzugs wohl den gleichen Wert hat, aber die entgegengesetzte Richtung).

Auch die geheimnisvolle Kraft im Magnetfeld hat an jedem Punkt eine Richtung. Um die Verteilung der Richtungen im Raum darzustellen zeichnet man Linien, die den  Verlauf der Richtungen andeuten: Ein magnetischer Gegenstand ( auf welchen die „Magnetkraft“ wirkt), wird im Magnetfeld entlang dieser „Feldlinien“ bewegt.

Ein Magnetfeld ist also die Gesamtheit aller Werte und Richtungen für die „Magnetkraft“ in der Umgebung eines Magneten. Zumindest für die Mathematiker. Für die Physiker ist ein Magnetfeld jedoch mehr als eine Sammlung von Zahlen: Es ist wirklich da – ein existierendes physikalisches Etwas, dem Energie innewohnt und das sich mit Hilfe von Gleichungen beschreiben lässt (Felder im Allgemeinen sind tatsächlich „nur“ Zahlensammlungen – reale Felder wie das Magnetfeld sind unter diesen etwas Besonderes).

Die Gleichungen für Magnetfelder hat der Physiker James Clerk Maxwell aufgestellt – deshalb werden sie nach ihm „Maxwell-Gleichungen“ genannt. In Worten sagen sie in etwa Folgendes über Magnetfelder aus:

  1. Ein Magnetfeld hat weder Ursprung noch Ende – es ist quellenfrei. Die „Pole“ eines Magneten markieren also nur die Orientierung des Magnetfelds – welches sich folglich auch im Magneten selbst erstreckt. Dementsprechend sind auch die Magnetfeldlinien ohne Anfang und Ende – sie sind in sich geschlossen, wie eine Rundstrecke beim Autorennen.
  2. Verändert sich ein Magnetfeld mit der Zeit, entsteht dadurch ein elektrisches Feld mit in sich geschlossenen Linien. Magnetismus ist also stets eng verbunden mit der Elektrizität – und umgekehrt.
  3. Denn eine weitere Gleichung sagt aus, dass elektrische Ströme bzw. die Veränderung eines elektrischen Feldes stets ein Magnetfeld erzeugen.
  4. So wird die Maxwell-Sammlung denn auch durch eine vierte Gleichung zu elektrischen Feldern (welche damit auch „real“ sind) vervollständigt: Ein elektrisches Feld kann einen Ursprung haben: Es geht von einer elektrischen Ladung aus. Die Feldlinien verlaufen dann von dieser Ladung fort. Das heisst, es gibt elektrische Felder mit nur einem Pol (der entweder positiv oder negativ ist), während Magnetfelder zwecks Darstellung ihrer Orientierung stets zwei Pole haben!
Magnetfeldlinien1

Eisenfeilspäne richten sich entlang von Magnetfeldlinien zwischen Nord- und Südpol eines Magneten aus und machen das Feld auf diese Weise „sichtbar“.(von Berndt Meyer [GFDL oder CC BY-SA 3.0], via Wikimedia Commons)

 

Als Pole eines Gegenstands, welcher ein Magnetfeld erzeugt, werden somit die Bereiche bezeichnet, in welchen die Magnetfeldlinien aus dem Gegenstand aus- bzw. wieder in ihn eintreten. Dabei hat man sich darauf geeinigt, dass die Seite, an welcher die Feldlinien austreten, sich im Magnetfeld der Erde nach Norden ausrichtet – und dementsprechend Nordpol heisst (der Nordpol der Erde ist also ein magnetischer Südpol, denn entgegengesetzte Pole ziehen sich an). Dort, wo die Feldlinien in den Magneten eintreten, ist dementsprechend der Südpol des Magneten.

Ein Magnetfeld ist also die räumliche Verteilung einer Kraft, die auf magnetische und magnetisierbare Materie und elektrische Ladungen wirkt: An jedem Punkt im Magnetfeld hat die Kraft einen bestimmten Wert (eine „Feldstärke“) und eine bestimmte Richtung.

 

Woher kommt die Magnetkraft?

Mit unseren Augen in unserer Welt betrachtet erscheinen die Magnetkräfte mystisch – ganz wie die elektrischen Kräfte, die beispielsweise einen Luftballon an der Wand festhalten, nachdem man ihn am Wollpullover gerieben hat. Und ganz wie die elektrische (Elementar-)Ladung ist auch der Magnetismus eine Eigenschaft der kleinsten Teilchen:

Jedes Proton, Neutron und Elektron ist ein winzig kleiner, unvorstellbar schwacher Magnet (diese Eigenschaft eines Teilchen wird auch magnetisches Moment oder kurz „Spin“ genannt)! Und diese winzigen Magnete lassen sich zu grösseren Magneten zusammensetzen, wobei ihre Magnetkräfte sich addieren: Die Protonen und Neutronen, die einen Atomkern bilden, machen den Kern zu einem etwas grösseren Magneten. Die Elektronen der Atomhülle jedoch steuern den Löwenanteil zum Magneten vom Ausmass eines ganzen Atoms bei. Atome verbinden sich zu Molekülen oder Kristallen – und Atom-Magnete vereinen sich Stoffen, die wir sehen und anfassen und deren Magnetkräfte wir wahrnehmen können.

 

Warum sind dann nicht alle Stoffe magnetisch?

Jeder der kleinen Elementarteilchen-Magnete (oder kurz: Elementarmagnete) erzeugt sein eigenes winziges Magnetfeld. Und das hat, wie oben beschrieben, eine bestimmte Orientierung. Das heisst, der Nordpol des kleinen Magnetfelds weist in eine bestimmte Richtung, der Südpol in die Gegenrichtung. Und wenn man Richtungen addiert, kommt nicht immer das raus, was man von der Addition von blossen Zahlen gewohnt ist.

Addition von Vektoren: Die Länge der Pfeile stellt den Wert der Grössen a und b dar, die Pfeilrichtung die zur Grösse gehörende Richtung. Solche Vektoren werden addiert, indem man die Pfeile Schaft an Spitze aneinanderreiht. Unterscheiden sich die Richtungen der Summanden dabei sehr, ist der Wert der Summe (die Länge des schwarzen Pfeils) mitunter kleiner als die Werte der Summanden.

 

Wenn man Grössen mit gar zu unterschiedlichen Richtungen addiert, ist das Ergebnis mitunter kleiner als die Summanden! Und wenn man nur genug Summanden mit unterschiedlichen Richtungen addiert, ist das Ergebnis schliesslich praktisch null.

Die Elementarmagnete in einem Stoff können ihre Orientierung frei wählen – so wie eine Kompassnadel sich frei um ihre Mittelachse drehen kann. So orientiert sich jeder Elementarmagnet in einem Stoff wie er gerade will – und wenn genug Elementarmagnete zusammenkommen, wird die Summe ihrer Orientierungen praktisch null: Es entsteht kein wahrnehmbares, „grosses“ Magnetfeld.

Erst wenn Elementarmagnete in ein bereits bestehendes Magnetfeld geraten, zeigen sich Unterschiede zwischen den magnetischen Eigenschaften der Stoffe. Magnetismus ist also nicht gleich Magnetismus. Stattdessen gibt es:

Diamagnetismus

Sobald Elementarmagnete in ein „fremdes“ Magnetfeld geraten, richten sie sich entlang der Feldlinien aus, wie Kompassnadeln im Erdmagnetfeld. Und sobald Ordnung herrscht, wird die Summe der kleinen Magnetfelder zu einem spürbar Grossen – allerdings dem „fremden“ Magnetfeld entgegen gerichtet. Die Magnetkraft, die der Stoff erst im „fremden“ Magnetfeld erhalten hat, hebt die Wirkung ebendieses fremden Magnetfeldes folglich (teilweise) auf.

Da Magnetfeldlinien jedoch nicht einfach unterbrochen werden dürfen, lässt sich dies darstellen, indem man die Feldlinien um den Stoff im Magnetfeld herum führt, als würde der Stoff die Linien verdrängen. Tatsächlich werden solche diamagnetischen Stoffe aus einem Magnetfeld hinausgedrängt wie ein Schwimmer aus dem Wasser!

Diamagnet: Neodym- magnete halten Graphit-Plättchen in der Schwebe

Kohlenstoff ist diamagnetisch: Ein Graphit-Plättchen schwebt im gemeinsamen Magnetfeld von vier vergoldeten Neodym-Magneten

Da die Elektronen unter den Elementarteilchen den Löwenanteil an den magnetischen Eigenschaften eines Stoffes haben, sind für dieses Verhalten im Magnetfeld nur Elektronen nötig – und die gibt es in jedem Atom. Daher ist jeder Stoff, der aus Atomen besteht, ein Diamagnet. Bemerkbar macht sich der Diamagnetismus allerdings nur, wenn der Stoff keine weitere, stärkere magnetische Eigenschaft hat- zum Beispiel bei Wasser oder bei Kohlenstoff.

Die Tatsache, dass damit zwei der wichtigsten Bestandteile von Mensch und Tier diamagnetisch sind, hat die Fantasie einiger Wissenschaftler angeregt: Was wäre, wenn wir dank unseres Diamagnetismus‘ auf Magnetfeldern durch die Luft schweben könnten? Einem Frosch ist ebendies dank eines richtig starken Magnetfelds bereits gelungen (wenn auch mit Sicherheit nicht freiwillig):

Dem Frosch ist dabei übrigens nichts passiert. Magnetfelder sind sowohl für Frösche als auch für Menschen nicht direkt spürbar. Ein ausreichend starker Magnet, dessen Feld einen ganzen Menschen in die Luft drängen kann, muss jedoch erst noch gebaut werden.

Paramagnetismus

Während alle Atome Elektronen haben, haben nicht alle Atome automatisch ein magnetisches Moment. Denn zu einem solchen kommen sie nur, wenn sich die Orientierungen der magnetischen Momente ihrer Bestandteile – insbesondere der Elektronen – nicht gegenseitig aufheben.

Wenn Atomen ein eigenes magnetisches Moment gegeben ist, richten sie sich in einem „fremden“ Magnetfeld geordnet aus wie alle anderen Elementarmagnete auch – allerdings verläuft das Magnetfeld, das sie so gemeinsam bilden, parallel, also ebenso orientiert wie das „fremde“ Magnetfeld. Die Folge davon: Innerhalb eines paramagnetischen Stoffes im Magnetfeld verlaufen mehr Feldlinien in die gleiche Richtung als ausserhalb – und der Paramagnet wird in das Magnetfeld hineingezogen, wenn auch nicht sehr stark.

Zudem gilt, ebenso wie für Diamagneten: Sobald das „fremde“ Magnetfeld verschwindet, gewinnt die Wärme, die ständig alle Atome bewegt, die Oberhand und schüttelt die Elementarmagnete in die Unordnung zurück.

Zu den paramagnetischen Stoffen zählen jene Elemente, deren Atome ungepaarte Elektronen, das heisst solche ohne Gegenstück in Sachen Orientierung, enthalten: zum Beispiel die Alkali- und Erdalkalimetalle und die seltenen Erden. Unter den Molekülen sind dementsprechend Radikale (die mindestens ein ungepaartes Elektron besitzen) paramagnetisch – so zum Beispiel Sauerstoff oder Stickstoffdioxid.

Sauerstoff

Bekannt ist die linke Darstellung des Sauerstoffmoleküls. Dass Sauerstoff paramagnetisch ist, lässt jedoch darauf schliessen, dass auch die rechte Darstellung mit zwei ungepaarten Elektronen der Wahrheit nahekommt.

Ferromagnetismus

Die Stoffe, die wir im Allgemeinen als „magnetisch“ kennen und aus welchen wir unsere Dauermagnete herstellen, verhalten sich im Prinzip wie Paramagnete. Allerdings ist der Ordnungs-„Sinn“ ihrer Elementarmagnete ungleich stärker, sodass Magnetfelder einen ungleich stärkeren Einfluss auf sie haben als auf Paramagnete.

Der bekannteste ferromagnetische Stoff ist Eisen (lateinisch Ferrum) – daher der Name für diese Art von Magnetismus. Ein Ferromagnet verstärkt nicht nur ein „fremdes“ Magnetfeld ungemein. Seine Elementarmagnete können ihre Ordnung zudem auch nach dem Verschwinden des ordnenden Magnetfeldes beibehalten, sodass „ihr“ Stoff dauerhaft ein Magnetfeld erzeugt!

Der verstärkte Ordnungssinn eines Ferromagneten rührt daher, dass die Elementarmagnete darin in besonders enger Beziehung zueinander stehen, welche ihnen eine besondere Austauschwechselwirkung ermöglicht. Diese Wechselwirkung beruht auf dem Pauli-Prinzip, das manch einer vielleicht aus der Schule kennt:

Zwei Elektronen mit vollkommen gleichen Eigenschaften dürfen nicht am gleichen Ort sein (deshalb haben zwei Elektronen, die sich ein Orbital im Atom teilen, stets entgegengesetzte Spins). Tatsächlich geht das Pauli-Prinzip aber noch weiter: Elektronen müssen sich stets in einer oder drei Eigenschaften unterscheiden, während zwei Unterschiede nicht erlaubt sind.

Werden also Elementarmagnete in enger Beziehung in einem Magnetfeld ausgerichtet, sodass ihre Orientierungen sich gleichen, unterscheiden sie sich nur noch in ihrem Ort. In Folge dessen ist ein zweiter Unterschied, zum Beispiel durch eine veränderte Orientierung, ohne das automatische Auftreten eines dritten Unterschiedes nicht mehr erlaubt. Ein Elementarmagnet im ausgerichteten Ferromagneten kann sich also nicht einfach so wieder umdrehen – auch dann nicht, wenn das ausrichtende fremde Magnetfeld längst wieder verschwunden ist.

Erst wenn die Wärmebewegung im Ferromagneten überhand nimmt, kann sie die Elementarmagnete aus ihrer „militärischen“ Starre reissen. Deshalb verlieren Dauermagnete bei hohen Temperaturen ihre Magnetkraft – die „Curie-Temperatur“ eines dauerhaft magnetischen Stoffs verrät, wann das der Fall ist (alternativ kann auch ein heftiger Schlag gegen den Magneten oder ein starkes, störendes Magnetfeld für entsprechende Unordnung sorgen).

Neben Eisen sind einzig die Elemente Cobalt und Nickel ferromagnetisch. Die Dauermagnete unseres Alltags bestehen zudem aus Legierungen, also Metallgemischen, die erst durch die Mischung ferromagnetisch werden.

Antiferromagnetismus

In manchen eigentlich ferromagnetischen Stoffen sind die Elementarmagnete in verschiedene Gruppen bzw. „Gitter“ eingeteilt, von welchen die eine Hälfte sich im Magnetfeld dank der Austauschwechselwirkung stabil in die eine Richtung ausrichtet, die andere Hälfte jedoch in die entgegengesetzte Richtung. Folglich erhält man, wenn man die Magnetkraft aller Elementarmagnete addiert, überhaupt keine Magnetkraft für einen solchen Stoff, und somit auch keine Wechselwirkung mit dem „fremden“ Magnetfeld. Zu diesen Antiferromagneten gehören unter anderem die Elemente Chrom und Mangan und das Mineral Hämatit.

Ferrimagnetismus

Verhalten sich die Elementarmagnete eines Stoffes im Grunde genommen wie die eines Antiferromagneten, während die Stärke ihrer Magnetfelder unterschiedlich ist, bleibt trotz entgegengesetzter Ausrichtung der verschiedenen Gitter ein Magnetfeld erhalten. Ein Ferrimagnet verhält sich also wie ein schwacher Ferromagnet – und tatsächlich gehören die ersten von Menschen entdeckten Dauermagnete in diese Gruppe:

Der Begriff „Magnet“ kommt nämlich vom griechischen „lithos magnes“, also „Stein aus Magnesia“, was sich auf die gleichnamige Region in Thessalien oder auch den Ort Magnesia am Mäander in der heutigen Türkei bezieht, welchen die „Magneten“ (nicht die Steine, sondern das Volk aus Thessalien!) gegründet haben sollen. Der ferrimagnetische Stein, welcher dort gefunden wurde, ist heute als das Mineral Magnetit, oder auch Magneteisenstein, bekannt. Es handelt sich dabei um das  Eisenoxid Fe3O4 bzw. Fe(II)Fe(III)2O4, welches sowohl Fe2+– als auch Fe3+-Ionen enthält. Auch einige ähnliche Verbindungen, in welchen das Fe2+-Ion durch andere Metallionen ersetzt ist, sind ferrimagnetisch, und werden als Gruppe der „Ferrite“ zusammengefasst.

Magnetit - Kristalle: Magnete aus der Natur

Magnetit (silbergraue Oktaeder) in Chalkopyrit (goldfarben) aus Aggeneys, Südafrika – ein ferrimagnetisches Mineral (by Rob Lavinsky, iRocks.com – CC-BY-SA-3.0 [CC BY-SA 3.0], via Wikimedia Commons)

Wie man einen Magneten herstellt

Wenn du einen Dauermagneten zur Hand hast, kannst du eine Eisennadel ganz einfach magnetisieren: Streiche dazu rund 50 mal mit dem Dauermagneten über die Eisennadel – immer in die gleiche Richtung! Auf diese Weise werden die Elementarmagnete in der Nadel nach und nach in die gleiche Orientierung „gebürstet“. Wenn du die Nadel schliesslich mit Hilfe eines Stücks Kork auf Wasser zum Schwimmen bringst, wird sie sich nach dem Erdmagnetfeld ausrichten.

Für die industrielle Herstellung von Magneten wäre es jedoch viel zu mühsam, jeden Magneten einzeln magnetisch zu bürsten. Deshalb verwenden die Hersteller von Dauermagneten ferro- oder ferrimagnetisches Pulver, welches sie innerhalb eines starken Magnetfeldes zusammenpressen. Für die schwarzgrauen, steinartigen Küchenmagnete werden dabei pulverisierte Ferrite eingesetzt. Da jedes Pulverkorn dabei einen Elementarmagnet darstellt (nicht so klein wie die „echten“ Elementarteilchen, aber klein genug), richten sich die Pulverkörner in diesem Magnetfeld ordentlich aus, ehe sie richtig zusammenpappen. Anschliessend werden die Pulverkörner bei sehr hohen Temperaturen zusammen geschmolzen (gesintert)…

Richtig! Dabei geht die Magnetkraft der einzelnen Körner und damit des ganzen Magneten aufgrund der heftigen Wärmebewegung der wirklichen Elementarmagnete wieder verloren! Allerdings bleibt die Orientierung der Körner selbst erhalten, sodass die Ordnung der Elementarmagnete nach dem Abkühlen in einem zweiten äusseren Magnetfeld problemlos wieder hergestellt werden kann.

Besonders starke Magnete erhält man zudem, wenn man dem ferromagnetischen Pulver einen paramagnetischen Stoff wie das Seltenerd-Metall Neodym unterjubelt: Die paramagnetischen Neodym-Teilchen werden im Magnetfeld des sie umgebenden Magnet-Pulvers dauerhaft in Ordnung gehalten und verstärken so das Magnetfeld des Dauermagneten ungemein!

Unglücklicherweise sind Seltenerd-Atome ziemlich reaktionsfreudig. Deshalb werden neodymhaltige „Supermagnete“ mit einer Schicht aus edleren Metallen (was diese Metalle edel macht ist eine andere Geschichte), in der Regel mit einer silbrig glänzenden Legierung aus Kupfer und Nickel, umgeben. Diese Beschichtung kann zudem vergoldet (dann glänzt der Magnet golden) oder verchromt werden.

 

Magnetismus und Strom

Die Maxwell-Gleichungen haben es bereits gezeigt: Wo ein Magnetfeld bewegt wird oder sich verändert, entsteht stets ein elektrisches Feld, und wo elektrische Ladungen (jede davon erzeugt ein kleines elektrisches Feld!) bewegt werden, entsteht ein Magnetfeld.

Diese Umstände weiss sich der Mensch zunutze zu machen, indem er einen Dauermagneten im Kreis dreht, sodass in seiner Umgebung Elektronen (in einem Draht) in Bewegung geraten (das ist ein Dynamo – oder im Grossformat ein Generator), oder Strom durch einen aufgewickelten Draht leitet, sodass das entstehende Magnetfeld in einem äusseren Magnetfeld mitsamt der Drahtspule in Drehung gerät (das ist dann ein Elektromotor). Die Einzelheiten zu solchen Elektromagneten und ihrem Nutzen bieten genug Stoff für eine eigene Geschichte und würden hier den Rahmen sprengen.

Im Allgemeinen unterscheidet sich das Magnetfeld eines Elektromagneten nicht von dem eines Dauermagneten – ausgenommen ist ein entscheidender Punkt: Sobald man einem Elektromagneten den Strom abstellt, verschwindet auch das Magnetfeld. Einen Dauermagneten kann man hingen nicht einfach ein- und ausschalten.

Das gilt auch für den grössten Magneten der Erde – die Erde selbst! Zwar ist das Erdmagnetfeld im weitesten Sinne auf einen riesigen Elektromagneten zurück zu führen – es wird von flüssigem Eisen erzeugt, welches im äusseren Erdkern in Strömungen bewegt wird – aber so lange unser Planet nicht innerlich auskühlt und erstarrt, wird nichts und niemand im Erdkern den Strom abstellen können. Und bis die Erde auskühlt, werden noch einige Milliarden Jahre vergehen müssen.

Elektromagnetische Wellen

Erst die untrennbare Verbindung zwischen elektrischen und Magnetfeldern ermöglicht uns, unsere Umgebung zu sehen und spannende Artikel über Magnetismus zu lesen. Denn wenn irgendwo in einem Atom ein Elektron zu schwingen anfängt, gerät eine elektrische Ladung in Bewegung – schliesslich schwingt die Elementarladung des Elektrons fleissig hin und her.

Und wo eine Ladung, und mit ihr ein elektrisches Feld in Bewegung ist, entsteht laut Maxwells Gleichungen ein Magnetfeld. Und wo ein Magnetfeld entsteht – was einer Veränderung desselben gleich kommt – entsteht sogleich wieder ein elektrisches Feld, und aus dem elektrischen Feld ein neues Magnetfeld…. Die Folge davon: die erscheinenden (und bei Ende der jeweiligen Veränderungen ebenso schnell wieder verschwindenden) Felder pflanzen sich durch den Raum fort. Und zwar so schnell wie nichts anderes: Die sich fortpflanzenden Felder bilden „elektromagnetische Wellen“ – kurz gesagt: Licht.

Und so, wie Licht durch bewegte elektrische Ladungen entsteht, können die Felder einer Lichtwelle wiederum Ladungen in Bewegung setzen. Wie uns dieser Umstand ermöglicht zu sehen, erfährst du in der Geschichte um Licht und Farben.

 

Supraleiter – die stärksten Magneten der Welt

Während Dauermagnete in ihrer Stärke durch die festgelegten magnetischen Eigenschaften ihrer Elementarmagnete begrenzt sind, hängt die Stärke eines Elektromagneten von der Stärke des darin fliessenden Stromes ab: Je stärker der Strom, desto stärker ist auch das erzeugte Magnetfeld. Theoretisch jedenfalls. Denn gewöhnliche Drähte leisten dem Strom stets einen gewissen Widerstand – dadurch entsteht im Draht „Reibungswärme“, die mit zunehmender Stromstärke irgendwann jedes Material zerstört.

Fast jedes Material zumindest. Denn glücklicherweise (für Physikfans und die moderne Technik) haben Wissenschaftler in den 1980er Jahren entdeckt, dass manche Materialien bei sehr, sehr niedrigen Temperaturen kurzerhand ihren gesamten Widerstand aufgeben – und somit ohne Reibung elektrischen Strom leiten. Die ersten dieser Supraleiter mussten noch mit flüssigem Helium auf unter 4°C über dem absoluten Nullpunkt gekühlt werden. Inzwischen gibt es jedoch sogenannte „Hochtemperatur“-Supraleiter, die sich schon mit flüssigem Stickstoff (bis -196°C, also rund 77°C über dem absoluten Nullpunkt) zufrieden geben. Und der lässt sich vergleichsweise wirtschaftlich beschaffen.

Deshalb werden die stärksten Elektromagneten, die beispielsweise in Kernspintomographen oder in Teilchenbeschleunigern zum Einsatz kommen – oder in Labors fantasievoller Wissenschaftler, die Frösche zum Schweben bringen, aus supraleitenden und damit nicht durchbrennenden Drähten hergestellt.

Noch spektakulärer anzuschauen sind wohl die Folgen einer weiteren Eigenschaft der Supraleiter: Neben der unbegrenzten Leitfähigkeit sind sie nämlich auch vollkommene Diamagneten – was ihnen ermöglicht, in einem ausreichend starken Magnetfeld frei zu schweben:

(Nicht zur Nachahmung empfohlen: Flüssigen Stickstoff oder damit Gekühltes NIEMALS mit der blossen Hand anfassen – Kaltverbrennungsgefahr!)

Sind Magnete oder Magnetfelder gefährlich?

Nach unserem heutigen Wissensstand: Nein. Die Orientierung der Elementarmagnete im menschlichen Körper ist für die Funktion der Atome und Moleküle darin praktisch ohne Bedeutung. Menschen bekommen daher selbst dann kaum etwas davon mit, wenn sie in ein starkes Magnetfeld geraten – wie ich nach einer Kernspin-Tomographie meines Kopfes vor einigen Jahren bestätigen kann. Einzig ein paar Lichtblitze „vor“ meinen Augen – so genannte „Magnetophosphene“, die durch Beeinflussung der Nervenströme in der Netzhaut durch das Magnetfeld entstehen – haben auf die Existenz des Feldes hingewiesen.

Anderes gilt für elektrische Geräte jeder Art: Da elektrische Ströme mit Magnetfeldern wechselwirken, können letztere elektrische Geräte gehörig durcheinander bringen oder sogar ausser Gefecht setzen. Wer einen Herzschrittmacher trägt, sollte sich also tunlichst von Kernspintomographen oder Supraleiter-Labors fernhalten (und nicht nur davon – selbst im Schullabor, wo einfache Magnet-Rührgeräte zum Einsatz kommen, habe ich das Warnschild für Herzschrittmacher-Träger gesichtet).

Darüber hinaus besteht die grösste Gefahr, die von Magneten ausgeht, wohl darin, sich unter starken Neodym-Magneten Körperteile einzuquetschen oder von plötzlich im Magnetfeld herumfliegenden ferromagnetischen Gegenständen getroffen zu werden.

Du kannst dich also getrost von der geheimnisvollen Magnetkraft verzaubern lassen und nach Herzenslust mit Magneten experimentieren.

Oder hast du schon? Welche Erfahrungen hast du mit Magneten schon gemacht?

Seltene Erden : Mine in Ytterby

Was sind „seltene Erden“? Warum ist dieser Name eigentlich irreführend? Was haben die chemischen Elemente, die diese Bezeichnung tragen, gemeinsam? Und warum haben sie gerade in den letzten Jahren häufig Schlagzeilen gemacht?

Das Artikelbild zeigt die aufgelassene Grube Ytterby heute (By Svens Welt (Own work) [CC BY-SA 3.0], via Wikimedia Commons). Traditionell statten alle Empfänger eines Nobelpreises dieser Fundgrube einzigartiger chemischer Elemente einen Besuch ab. Denn vor über 200 Jahren begann dort die Geschichte der seltenen Erden.

Ein Ausflug in die Geschichte: Als die seltenen Erden noch selten waren

Ytterby, Schweden, 1787. Leutnant Carl Axel Arrhenius streift über die Abraumhalden der Grube nahe des kleinen Dorfes auf einer Insel vor Stockholm. Schon seit dem sechzehnten Jahrhundert hat man hier Quarz für die Eisenhütten der Umgebung abgebaut, und neuerdings gewinnt man ausserdem Feldspat für die Porzellan- und Glasindustrie. Arrhenius interessiert sich jedoch nicht für diese beiden gar zu häufigen Mineralien, sondern für das, was die Minenarbeiter unweigerlich mit ihnen zu Tage fördern und als unbrauchbar auf den Halden entsorgen. Für den Leutnant ist die Stationierung im nahen Vaxholm ein Glücksfall, gibt sie ihm doch die Gelegenheit, hier in Ytterby seinem grossen Hobby, der Geologie, nachzugehen und nach Mineralien zu suchen.

Die Abraumhalden von Ytterby haben schon manch interessantes Fundstück für ihn bereit gehalten, sodass es Arrhenius immer wieder hier hinaus zieht. Doch was er nun in der Hand hält, ist wahrhaft aussergewöhnlich. Der schwarze Stein, ein raues Felsbruchstück, ist bemerkenswert schwer, und Arrhenius‘ Sammlerinstinkt lässt ihn ahnen: Das ist etwas ganz besonderes.

Gadolinit : Mineral mit seltenen Erden

Gadolinit: Grosser Einkristall (8.2 x 7.1 x 5.2 cm), Tuftane-Steinbruch, Frikstad, Norwegen (by Rob Lavinsky, iRocks.com – CC-BY-SA-3.0 [CC BY-SA 3.0], via Wikimedia Commons)

 

Welch ein Glück, dass er mit einigen der berühmtesten skandinavischen Chemiker seiner Zeit bekannt ist, und diese sich der Untersuchung seines seltsamen Fundstücks annehmen. Professor Johan Gadolin von der Universität von Åbo gelingt schliesslich eine vielversprechende Analyse: Rund 38% des schwarzen Minerals bestehen demnach aus einer ganz neuartigen „Erde“, welche Gadolin aus seinen Proben aus Ytterby isolieren kann. Als „Erden“ bezeichnen die Chemiker zu dieser Zeit die Oxide der Metalle – die Begriff „Oxid“ ist wesentlich jüngeren Datums.

Gadolins Erde erhält nach ihrem Herkunftsort den Namen „Yttererde“, und der Chemiker erkennt, dass darin ein neues Element enthalten ist. Später erhält dieses Element – wiederum nach dem Ort seiner ersten Entdeckung – den Namen Yttrium, während das schwarze Mineral zu Ehren seines Untersuchers „Gadolinit“ genannt wird.

Die eigentliche Überraschung, welche dieses Mineral in sich birgt, wird jedoch erst im Laufe eines Jahrhunderts voller Arbeit vieler Chemiker offenbar: Die Yttererde besteht nicht, wie man annehmen mag, aus reinem Yttriumoxid, sondern lässt sich in mehrere verschiedene Oxide auftrennen! Und mit vielen ähnlichen neuen „Erden“ verhält es sich ebenso.

Heute wird die chemische Formel des Gadolinits, welchem die Yttererde entstammt, mit (Ce,La,Nd,Y)2FeBe2Si2O10 angegeben. Damit enthält das Mineral nicht bloss eines, sondern gleich vier Elemente, welche Leutnant Arrhenius und Professor Gadolin ihrerzeit nicht bekannt waren: Yttrium (Y), Cer (Ce), Lanthan (La) und Neodym (Nd). Und die Aufzählung ihrer Symbole innerhalb der runden Klammern deutet an, warum Gadolin sie nicht gleich alle entdeckt hat: Diese Elemente sind sich chemisch so ähnlich, dass sie in natürlichen Kristallen (d.h. Mineralien) stets bunt gemischt vorkommen und mit den Methoden des späten 18. Jahrhunderts kaum zu trennen waren.

Reiche Erzlagerstätten dieser und weiterer einander täuschend ähnlicher Elemente, wie die Mine in Ytterby, sind nicht besonders häufig. So waren wohl auch die Oxide dieser Elemente anfänglich nicht nur neu und merkwürdig, sondern in der Welt der Chemiker und Mineralogen überdies selten, was den Elementen und ihren Verbindungen ihren bis heute verbliebenen gemeinsamen Namen eingebracht haben wird: „Seltene Erden“.

 

Ein Steckbrief der „seltenen Erden“

Seltene Erden sind:

  • nach heutiger Auffassung die Elemente Scandium, Yttrium, Lanthan und die 14 auf Lanthan folgenden Elemente, die auch „Lanthanoiden“ genannt werden: Cer, Praseodym, Neodym, Promethium, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium und Lutetium:

Scandium, Yttrium und Lanthan sind sogenannte Übergangsmetalle, die im Periodensystem untereinander stehen. Das bedeutet, ihre Elektronenhüllen sind analog aufgebaut, was allein schon ihre chemische Ähnlichkeit erklärt. Die 14 Lanthanoiden werden (gemeinsam mit den Actinoiden) häufig in einer separaten Zeile unterhalb des Periodensystems aufgelistet, damit das Ganze vernünftig auf ein Blatt Papier passt. Eigentlich gehören sie nämlich in die sechste Periode zwischen Lanthan und Hafnium.

  • auf der Erde gar nicht so selten:

Grössere Seltenerd-Erzlagerstätten sind zwar selten, aber kleine Mengen der Elemente sind über eine Vielzahl von Mineralien und Erzen weit verteilt. So findet man das häufigste Seltenerd-Element Cer auf der Erde häufiger als Kupfer, während das seltenste, Thulium, noch häufiger ist als Silber.

  • einander sehr ähnliche Metalle:

Die elementaren Seltenerdmetalle sind silberweiss, metallglänzend und formbar – typische Metalle eben. Darüber hinaus sind sie in sehr ähnlicher Weise unedel und sehr reaktiv. Alle Seltenerdmetalle sind hochentzündlich, manche Lanthanoiden neigen sogar zur Selbstentzündung an der Luft. Deshalb werden viele Seltenerdmetalle für industrielle Zwecke häufiger in Form stabilerer chemischer Verbindungen verkauft anstatt als reines Metall.

Lanthanoide : Viele seltene Erden sind f-Elemente

Die Lanthanoiden (ausser Promethium) als reine Metalle by Tomihahndorf at the German language Wikipedia [GFDL or CC-BY-SA-3.0], via Wikimedia Commons

 

  • Unverzichtbare Bestandteile der modernen Technik:

Ob als Bestandteil von Nickel-Metallhydrid-(NiMH)-Akkus, in „Supermagneten“, z.B. in Windkraftanlagen und Lasern, Computern, Bildschirmen und Energiesparlampen als Katalysatoren oder gar als Kontrastmittel in der Medizin: In kaum einem Bereich des modernen, technischen Lebens begegnet man den Seltenerd-Metallen nicht. Deshalb sind sie insbesondere für die Industriestaaten als Rohstoffe so unverzichtbar.

  • nicht radioaktiv:

Mit einer Ausnahme: Das Lanthanoid Promethium kommt nur in Form des β-strahlenden Pm-147 mit einer Halbwertszeit von rund 2,6 Jahren in der Natur vor – in kleinsten Mengen als Zerfallsprodukt von Uran in dessen Erzen. Das langlebigste (künstlich erzeugte) Promethium-Isotop ist Pm-145 mit einer Halbwertszeit von 17,7 Jahren. Somit sind alle Promethium-Isotope, die vielleicht einmal in der Materie, welche die Erde formen sollte, enthalten waren, in den viereinhalb Milliarden Jahren Erdgeschichte längst zerfallen.

  • Im Vergleich zu vielen bekannten Schwermetallen nur wenig bis gar nicht giftig:

Viele weitere Bestandteile der Erze (darunter finden sich nicht selten sogar radioaktive Elemente wie Uran und Thorium!), aus welchen sie gewonnen werden, hingegen schon. Deshalb ist der beim Abbau von Seltenerd-Metallen zurückbleibende Schlamm Umwelt und Gesundheit zuliebe sicher zu verwahren oder zu entsorgen.

  • Im Internet für jedermann erhältlich:

In den gängigen Online-Auktionshäusern werden immer wieder Seltenerd-Metalle angeboten. Aber Achtung: Längst nicht alles, was dort als „Seltenerd-Metall“ oder bezeichnet wird, ist auch ein solches – dazu zählen nur die oben genannten bzw. in der folgenden Tabelle aufgezählten Elemente!. In der Regel sind reine Seltenerd-Metalle unter einer reaktionsträgen Atmosphäre (meist Argon) in Glasphiolen eingeschlossen, damit sie nicht mit ihrer Umgebung reagieren können. Ein hochwertiger Schaukasten mit allen Lanthanoiden ausser Promethium ist meist für gute 350 Euro bzw. knapp 400 Franken zu haben.

Element Element-symbol Bedeutung des Namens Verwendung in der Technik (Beispiele)
Scandium Sc lat.: Scandia für Skandinavien, wo das erste Erz entdeckt wurde Stadionbeleuchtung, Brennstoffzellen, Laser
Yttrium Y nach Ytterby, dem Ort seines Erstfundes Leuchtdioden, Flachbildschirme, Laser
Lanthan La griech.: lanthanein = versteckt sein Ni-MH-Akkus, Katalysatoren
Cer Ce nach dem zur gleichen Zeit entdeckten Zwergplaneten Ceres Abgas-Katalysatoren, UV-Schutzgläser
Praseodym Pr griech.: prásinos = lauchgrün, didymos = doppelt : der lauchgrüne Zwilling Dauermagnete, Elektromotoren, Glasfarbstoff
Neodym Nd griech.: neos = neu, didymos = doppelt : der neue Zwilling Dauermagnete (z.B. in Windkraftanlagen), CD-Spieler
Promethium Pm nach Prometheus, einer Figur der griechischen Mythologie Leuchtziffern, Wärmebatterien in Raumfahrzeugen (da radioaktiv!)
Samarium Sm nach dem Mineral Samarskit, in welchem es erstmals nachgewiesen wurde Dauermagnete in elektronischen Kleingeräten, auch Raumfahrt
Europium Eu nach dem Kontinent Europa roter Leuchtfarbstoff: Leuchtdioden, Plasmabildschirme, Energiesparlampen
Gadolinium Gd nach dem Mineral Gadolinit Kontrastmittel für die Kernspin- tomographie, grüner Leuchtfarbstoff in Radarschirmen
Terbium Tb nach Ytterby, dem Ort des Erstfundes einer seltenen Erde Dauermagnete, Sonartechnik
Dysprosium Dy griech.: dysprosios = unzugänglich Dotierung von Kondensatoren, Dosimeter, Halogenlampen
Holmium Ho lat.: Holmia für Stockholm, die Hauptstadt Schwedens Laser
Erbium Er nach Ytterby, dem Ort des Erstfundes einer seltenen Erde Laser, Glasfaserkabel bzw. -verstärker
Thulium Tm nach Thule, der Bezeichnung für Skandinavien in der klassischen Antike Dotierung in der Röntgentechnik, Gamma-Strahlenquelle für die Werkstoff- prüfung
Ytterbium Yb nach Ytterby, dem Ort des Erstfundes einer seltenen Erde Kunststoff-Zahnfüllungen, Laser
Lutetium Lu lat.: Lutetia für Paris, die Hauptstadt Frankreichs Beta-Strahlenquelle: Positronen-Emissions-Tomografie

Warum sich die seltenen Erden chemisch so sehr ähneln

Die Seltenerd-Metalle gleichen einander in ihrer Chemie derart, dass selbst die Natur sie ständig miteinander verwechselt: Ein Seltenerd-Erz enthält stets mehrere verschiedene Metalle, deren Ionen ihre Plätze im Kristall wechselweise einnehmen, als gehörten sie allesamt zur selben Ionensorte. Wenn Chemiker versuchen, für solch einen Kristall eine chemische Formel aufzustellen, kommt so etwas herum wie für das schon erwähnte Mineral Gadolinit: (Ce,La,Nd,Y)2FeBe2Si2O10 . Es handelt sich dabei um ein Silikat, also ein Salz einer Kieselsäure, welches neben einem Eisen- und zwei Beryllium-Ionen zusätzlich zwei Seltenerdmetall-Ionen je Formeleinheit enthält. Innerhalb der runden Klammern ist die Auswahl derjenigen Metalle angegeben, aus welcher diese beiden Ionen stammen: Cer, Lanthan, Neodym und Yttrium. Welche beiden dieser Ionen man in einem beliebigen Ausschnitt des Kristalls, für welchen die Formel steht, jeweils antrifft, ist freilich dem Zufall überlassen.

Doch warum sind sich die Seltenerd-Metalle chemisch so ähnlich? Die Chemie eines Atoms, also seine Neigung zu Reaktionen sowie seine „Passform“ bei der Entstehung eines Ionenkristalls, wird vom Aufbau seiner Elektronenhülle bestimmt. Und der ist normalerweise von Element zu Element verschieden – einzig die Elemente, die im Periodensystem untereinander stehen (wie Scandium, Yttrium und Lanthan), ähneln sich ein Stück weit, da sich ihre Elektronenhüllen nur in der Anzahl besetzter Energieniveaus („Etagen“ im Elektronenhüllen-Haus) unterscheiden, nicht aber in der Besetzung des massgeblichen äussersten Niveaus.

Die Lanthanoiden unter den seltenen Erden haben alle miteinander eine einzigartige Stellung im Periodensystem inne, da sie die ersten Elemente mit Elektronen in einem zusätzlichen „Zwischengeschoss“ sind, dessen Elektronen-„Wohnungen“ die Chemiker als f-Orbitale bezeichnen. Das besetzte f-Zwischengeschoss der Lanthanoiden gehört dabei rein formal zur vierten „Etage“ des Elektronenhülle, obwohl es in der sechsten Zeile (Periode) des Periodensystems auftauchen und dementsprechend auch erst nach dem ersten Orbital der sechsten „Etage“ aufgefüllt werden.

Gemäss den Spielregeln der Chemie sind jedoch die Elektronen der äussersten Schale (die auch als „Valenzelektronen“ bezeichnet werden) für das Verhalten eines Atoms entscheidend – bei den Lanthanoiden also die drei Elektronen, welche den ersten drei Positionen in der sechsten Periode des Periodensystems entsprechen. Wie viele Elektronen darüber hinaus im f-Zwischengeschoss sind, ist hingegen ziemlich egal. So wird es niemanden wundern, dass alle Seltenerd-Metalle dreifach positiv geladene Ionen bilden, indem sie ihre drei Valenzelektronen abgeben und damit ihre Aussen-Etage vollkommen entleeren (einige bilden darüber hinaus auch zwei- oder vierfach positiv geladene Ionen, da sie ihre Elektronen noch anderweitig „energetisch günstig“ zu sortieren wissen).

Dieser besondere Aufbau der Elektronenhüllen der Lanthanoide hat noch einen weiteren einzigartigen Effekt zur Folge: Normalerweise sind Ionen der Elemente umso grösser, je mehr Elektronen in ihrer Hülle „Wohnungen“ bzw. Orbitale besetzen. Logisch, denn je mehr bewohnte Wohnungen man haben will, desto höher wird man das Haus bauen müssen.

Bei den Lanthanoiden wirkt sich der Einzug der Elektronen in die Orbitale des f-Zwischengeschosses jedoch nicht auf die Höhe des Hauses aus – gehört dieses Zwischengeschoss doch zur vierten Etage und nicht zur sechsten. Da mit der wachsenden Anzahl Elektronen jedoch auch die positive Ladung des Atomkerns zunimmt, steigt auch die Anziehungskraft, die der Kern auf seine Elektronenhülle ausübt – ohne dass diese durch zusätzliche Wohnungen und Etagen dicker würde. Und diese Anziehungskraft macht sich so stark bemerkbar, dass die Ionen der Lanthanoiden von links nach rechts im Periodensystem tatsächlich kleiner werden, anstatt wie bei allen anderen Elementen grösser! Dieser Effekt, den die Chemiker „Lanthanoidenkontraktion“ nennen, ist so stark, dass ein Dysprosium-Ion (das neunte Element in der Reihe der Lanthanoiden) ebenso klein ist wie ein Yttrium-Ion, dessen äusserste besetzte Etage die fünfte anstatt der sechsten ist!

 

Warum in den letzten Jahren so ein Aufstand um seltene Erden gemacht wurde

Ohne die seltenen Erden könnte es unsere High-Tech-Welt, wie sie zur Zeit aussieht, nicht geben. Das zeigt allein schon die oben gelistete Auswahl an technischen Anwendungen dieser einzigartigen Metalle. Ihre Gewinnung ist jedoch mit grossem Aufwand und Risiken für die Umwelt verbunden. Wohl deshalb leistet zu Beginn des 21. Jahrhunderts China weit über 90% der weltweiten Förderung der seltenen Erden – nennt es doch die weltweit grössten zusammenhängenden Vorkommen an Seltenerd-Erzen sein Eigen, welche etwa 30% der weltweiten Reserven ausmachen.

All jene Industriestaaten, die sich die Hände nicht in dieser Weise schmutzig machen wollen, sind damit weitestgehend auf die Einfuhr von seltenen Erden aus China angewiesen. Als die Chinesen 2010 entschieden, die Ausfuhr ihrer seltenen Erden zu beschränken, gerieten ihre Abnehmer somit gehörig ins Schwitzen – denn alternative Quellen waren auf die Schnelle nicht zur Hand. Die Begründung Chinas, die Beschränkung der Umwelt zuliebe einzuführen (Warum sollten wir uns für euch andere die Hände bzw. die Umwelt schmutzig machen?), erschien der Weltöffentlichkeit zudem als reichlich wenig glaubwürdig.

So schien es nur noch zwei Möglichkeiten zu geben einen Engpass in Sachen seltene Erden zu vermeiden: Die Ansiedelung von Hightech-Produktionsfirmen in China, um anstelle der Seltenerd-Erze die fertigen Produkte aus China auszuführen, oder eine Beschwerde bei der Welthandelsorganisation WTO – denn die Ausnutzung eines Rohstoff-Monopols um einheimischen Firmen Wettbewerbsvorteile zu verschaffen ist gemäss den Spielregeln der Weltwirtschaft nicht erlaubt.

Nachdem jene westlichen Firmen, die sich für eine Ansiedelung in China entschieden, auch dort von Benachteiligungen gegenüber den einheimischen Konkurrenten berichteten und eine geplante Erhöhung der Ausfuhrzölle für seltene Erden die Lage noch mehr zu verschärfen drohte, zogen die USA, gefolgt von der EU und Japan, am 13. März 2012 schliesslich vor das Gericht der WTO – und erhielten Recht. Doch obwohl dieser Schiedsspruch schon im Jahr 2013 erfolgte, sträubten die Chinesen sich noch bis Anfang 2015, ehe sie die Ausfuhr der seltenen Erden endgültig freigaben.

Die Ironie dabei: Tatsächlich wurde die Beschränkung der Ausfuhr von seltenen Erden auf rund 31.000 Tonnen pro Jahr nie ausgeschöpft – im Jahr 2013 wurden laut der FAZ gerade einmal 22.493 Tonnen exportiert, bis November 2014 waren es 24.886 Tonnen. Hat China die Ausfuhrbeschränkung also letztlich aufgehoben, weil sie keinen Nutzen mehr hatte?

Wenn der ganze Zwist um die chinesischen seltenen Erden für den Rest der Welt einen Nutzen hatte, dann wohl jenen, dass er diese wichtigen, der Allgemeinheit aber eher unbekannten Elemente populär machte und zum Nachdenken über andere Gewinnungsmöglichkeiten – vor allem durch Recycling von „High-Tech-Abfällen“ – angeregt hat und anregt.

Und welche seltene(n) Erde(n) sind euch in eurem Alltag schon begegnet?

Literatur:

[1] L.F.Trueb (2005). Die chemischen Elemente – Ein Streifzug durch das Periodensystem. Stuttgart: S.Hirzel Verlag

[2] Der einmal wirklich gute Wikipedia-Artikel zu den Seltenen Erden