Tag Archive for: Schmelzen

Rätsel-Experiment für Kinder: Womit funktioniert der Eiswürfel-Kran?

Wenn es draussen kalt und grau ist, mache ich es mir gerne im Warmen gemütlich. Aber was tun an langen Tagen daheim? Ich habe für euch ein winterliches Rate-Experiment:

Mit welcher „magischen“ Substanz könnt ihr einen Eiswürfel an einem Bindfaden befestigen und hochheben?

Nein, ich meine nicht Klebstoff. Der würde an einem Eiswürfel soundso nicht haften, sondern ratzfatz wieder abgehen, wenn das Eis schmilzt. Es gibt jedoch einen anderen Stoff, der den Bindfaden dank eines raffinierten physiko-chemischen Tricks ganz wunderbar am Eiswürfel haften lässt.

Lasst die Kinder den „magischen“ Stoff erraten!

Welcher Stoff kann sowas? Lasst insbesondere eure Nachwuchs-Forscher darüber nachdenken (und ratet selbst mit, wenn ihr noch nicht darauf gekommen seid), bevor ihr weiter (vor-)lest. Dann könnt ihr nach folgender Anleitung ganz einfach selbst ausprobieren, ob ihr recht hattet.


Experiment: Wir bauen einen Eiswürfel-Kran


Ihr braucht dazu

  • einen Eiswürfel
  • ein Glas Wasser
  • einen stabilen Holzstab(Schaschlikspiess etc.)
  • ein Stück Bindfaden
  • Zucker oder Salz oder Pfeffer oder Kaugummi
Das braucht ihr: Glas mit Wasser, Holzspiesse, Bindfaden, Eiswürfel

Nur mit einem dieser Stoffe funktioniert das Experiment. Nennt den Nachwuchs-Forschern ruhig diese Vier zur Auswahl. Vielleicht kommen sie selbst darauf, was sie wirklich brauchen. Stattdessen könnt ihr auch alle vier Möglichkeiten ausprobieren.

So geht’s

  • bindet das Stück Bindfaden an euren Stab, sodass ein kleiner Kran entsteht
  • legt den Eiswürfel in das Wasserglas: Er schwimmt (Wieso? s. hier–>Eis wächst)
  • fragt spätestens jetzt die Nachwuchs-Forscher: Was glaubt ihr: Welche der genannten Zutaten ist geeignet, um den Eiswürfel an den Faden zu heften?
  • streut etwas von der „magischen“ Substanz auf den Eiswürfel und legt das freie Ende des Fadens dazu.
  • wartet ca. 30 Sekunden
  • hebt den Eiswürfel vorsichtig am Faden aus dem Wasser.

Das könnt ihr beobachten

Wenn ihr die richtige Zutat gefunden habt, haftet der Eiswürfel am Faden, sodass ihr ihn aus dem Wasser heben könnt!

Der Eiswürfel hängt frei am Bindfaden!
Geht nur mit der richtigen Zutat: Der Eiswürfel hängt frei am Bindfaden!

Welches ist die richtige „magische“ Substanz?

Erinnert ihr euch an die Wirkweise von Streusalz (die habe ich hier erklärt)? Wenn dessen Ionen sich mit Wasser mischen, bringt das Eis in der Umgebung zum Schmelzen. Die Wassermoleküle sind nämlich derart damit beschäftigt, die Salzionen zu umhüllen, dass sie nicht mehr am stetigen Schmelzen und Gefrieren, das sich zwischen Eis und Wasser abspielt, teilhaben können.

Und dann – so besagt es das Gesetz von Le Châtelier – müssen diese Wassermoleküle ersetzt werden. Indem mehr Eis zu flüssigem Wasser schmilzt, als es das normalerweise tut.

Das Schmelzen aber verbraucht Energie, entzieht der Umgebung also Wärme. Die Umgebung von Salz und Faden kühlt also ab, bis schliesslich selbst das Salzwasser mitsamt dem Faden am Eiswürfel festfriert!

Entsorgung

Sobald das Eis geschmolzen ist, könnt ihr das Salzwasser einfach in den Abfluss geben. Zum Blumengiessen eignet es sich wahrscheinlich nicht mehr, da die Pflanzen zu viel Salz nicht vertragen.

Alltagstipp: Eis und Salzwasser als Kühlmittel

Im Labor nutzen Chemiker die Abkühlung, die Salz in Eiswasser verursacht, zur Kühlung von Experimenten, bei denen zu viel Wärme frei wird. Streusalz ist ein billiges Mittel dafür. Das entstehende Salzwasser ist zudem nicht giftig, sodass es nachher einfach in den Abfluss entsorgt werden kann.

Tafelsalz ist zwar etwas teurer, funktioniert aber ebenso: Wenn eure Getränke im Eiswürfelbad einmal nicht kalt genug werden, gebt etwas Wasser und Salz dazu und rührt vorsichtig, um ein Eisbad zwischen 0°C und -10°C zu erhalten!

Und probiert ihr den Eiswürfelkran selbst aus? Über eure Erfahrungsberichte freue ich mich sehr!

Hast du das Experiment nachgemacht: 

[poll id=“13″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Winterzeit ist Zeit für Experimente! Weite Teile Mitteleuropas versinken dieser Tage im Schnee. In manchen Regionen rund um die Alpen fällt sogar die Schule aus. Das ist _die_ Gelegenheit, die weisse Pracht näher zu erforschen!

Und da können sogar schon die ganz Kleinen mitmachen, denn die folgenden Experimente sind auch schon für Kinder im Kindegartenalter geeignet.

Was passiert, wenn Schnee warm wird?

Los geht es mit der alles bestimmenden Frage: Was passiert, wenn Schnee warm wird? Die Antwort ist einfach: Er schmilzt. Das weiss doch jedes Kind. Schnee ist ja schliesslich gefrorenes Wasser. Und wenn er schmilzt, wird daraus natürlich flüssiges Wasser.

Aber zur Zeit liegt draussen eine ganze Menge Schnee. Wenn der in ein paar Tagen einfach zu Wasser wird, müssten wir ja förmlich in den Wassermassen versinken….oder? Prüfen wir das doch ganz einfach nach.


Experiment 1: Wieviel Wasser steckt in einem Liter Schnee?


Ihr braucht dazu:

  • Einen Messbecher oder ein durchsichtiges Kunststoffgefäss, in das etwa 1 Liter Wasser passt (Glas kann bei plötzlicher Kälte springen, deshalb ist Kunststoff hier sicherer!)
  • genügend weichen, nicht zu nassen Schnee
  • eine kleine Schaufel
  • eventuell einen wasserfesten Filzschreiber

So geht’s:

Füllt den Messbecher bis zur 1-Liter-Marke mit Schnee. Wenn ihr keinen Messbecher habt, füllt euer Gefäss einfach nicht ganz bis zum Rand und markiert die Füllhöhe mit einem Strich. Wenn Kindergartenkinder noch keine Skala lesen können, kann ein farbiger Strich zur Erinnerung auch auf dem Messbecher angebracht werden.

Ein Liter Schnee, locker in den Messbecher geschaufelt

Stellt den Becher mit dem Schnee in einen warmen Raum und wartet etwa 3 bis 4 Stunden. Wenn ihr so viel Geduld nicht aufbringt, könnt ihr den Becher natürlich auch auf die Heizung oder in einem Topf mit heissem Wasser auf die Herdplatte stellen (Kunststoff nie direkt auf den Herd!). Dann geht es schneller. Gebt nur acht, dass ihr den Messbecher von der Wärmequelle nehmt, sobald der Schnee geschmolzen ist. Sonst verdampft zu viel Wasser!

Was geschieht?

Der Schnee schmilzt nach einiger Zeit vollständig. Es bleibt dabei aber sehr viel weniger als ein Liter Wasser übrig – in meinem Versuch gerade einmal 1/8 Liter (also 125ml)!

1 Liter Schnee geschmolzen: 1/8 Liter Wasser!
Der Schnee ist geschmolzen: Es bleibt nur 1/8 Liter Wasser!

Warum ist das so?

Lasst die Kinder zunächst Vermutungen anstellen. Vielleicht kommen sie ja selbst darauf: Der Schnee füllt das Gefäss nicht lückenlos. Das heisst, er muss Luft enthalten!


Bekommt man das Gefäss auch so voll mit Schnee, dass keine luftgefüllten Zwischenräume mehr bleiben?



Experiment 2: Wieviel Schnee kann man in das 1-Liter-Gefäss stopfen?


Ihr braucht dazu:

  • Den Messbecher oder euer 1-Liter-Gefäss
  • noch mehr Schnee
  • die Schaufel
  • eine Küchenwaage (für Kindergartenkinder, die noch keine Zahlen lesen und vergleichen können, ist eine Balkenwaage oder mechanische Anzeige, z.B. mit Zeiger, direkter erlebbar als eine digitale Waage – aber kein Muss)

So geht’s:

Stellt den leeren, trockenen Messbecher oder das Wassergefäss auf die Waage und schreibt euch das Gewicht auf.

Der leere Messbecher wiegt 112g.
Mein leerer Messbecher wiegt 112 Gramm.

Schaufelt dann draussen Schnee in das Gefäss und drückt ihn nach jeder Schaufelladung so fest hinein wie ihr könnt. Tragt dabei Winterhandschuhe oder arbeitet so zügig, dass euch weder der Schnee schmilzt noch die Finger abfrieren.

Trocknet das Gefäss aussen ab und wiegt es gleich noch einmal. Zieht dann das Gewicht des leeren Gefässes von dem des vollen Gefässes ab. Nun wisst ihr, wieviel Schnee ihr in euer Gefäss gestopft habt!

Messbecher mit Schnee auf der Waage
  • Gewicht meines vollen Messbechers: 653g
  • Gewicht meines leeren Messbechers: -112g
  • Gewicht des Schnees im Messbecher : 541g


Wer schon weiss, dass ein Liter Wasser rund 1 Kilogramm wiegt (für die fortgeschrittenen Physiker und Chemiker unter euch: Die Dichte von Wasser beträgt rund 1kg/l, also 1g/ml), der kann nun schon voraussagen, wie viel Wasser übrig bleiben wird, wenn der ganze Schnee geschmolzen ist. In meinem Messbecher sollten das 541ml sein.



Experiment 3: Wieviel Wasser steckt in dem gestopften Schnee?


Ihr braucht dazu:

  • den vollgestopften Becher von Experiment 2
  • noch ein paar Stunden Zeit oder eine Wärmequelle

So geht’s:

Stellt das mit Schnee vollgestopfte Gefäss an die Wärme und wartet – wie in Experiment 1 – bis der Schnee komplett geschmolzen ist. Dann lest die Skala ab. Wenn ihr keinen Messbecher mit Skala habt, markiert die Füllhöhe mit flüssigem Wasser mit einem zweiten Strich und vergleicht sie mit der Höhe des ersten Striches.

Was geschieht?

Der Schnee ist geschmolzen: Es sind etwas weniger als 550ml Wasser übrig – genau so viel wie erwartet!

Tatsächlich: In meinem Messbecher sind am Ende knapp 550ml Wasser! Genauer ist meine Skala nicht, aber die Rechnung scheint zu stimmen.

Aber: Das ist ja nur wenig mehr als die Hälfte von einem Liter, den ich vorher dicht mit Schnee vollgestopft habe! Obwohl ich mir so viel Mühe gegeben habe und es nicht danach aussah, ist immer noch fast das halbe Gefäss voller Luft gewesen!



Wie kann das sein, dass ich den Schnee einfach nicht dicht genug zusammenquetschen kann?


Noch ein Experiment: Schnee unter der Lupe

Um das zu erforschen, werdet ihr ein technisches Hilfsmittel brauchen: Eine starke Lupe, eine Fotokamera mit Makro-Objektiv oder leistungsstarkem Zoom, oder am besten ein einfaches Mikroskop.

Seht euch damit Schneeflocken oder ganz frisch geschneiten Schnee einmal genauer an (wie genau ihr das anstellt, zeige ich euch hier).

Schneeflocken unter meinem billigen USB-Mikroskop: Es handelt sich wunderschöne filigrane Eiskristalle!

Ihr werdet feststellen, dass Schneeflocken tatsächlich wunderschöne, filigrane Sterne sind, mit vielen Zacken und luftgefüllten Lücken dazwischen. Und diese Sterne bestehen aus Eis! Und Eis wiederum ist hart und steif. So ähnlich wie eure Legosteine.

Und wenn ihr die Legosteine alle zusammen in eine Kiste räumt, verkeilen und verhaken sich Fenster, Bäume und Figuren ineinander. So können sie nicht aneinander vorbei gleiten, so sehr ihr auch von oben darauf drückt. Davon gehen sie allerhöchstens kaputt. Aber es bleibt trotzdem noch reichlich Luft zwischen den Bausteinen.

Das gleiche passiert mit den Schneeflocken, wenn ihr darauf drückt: Die schönen Sterne verhaken sich ineinander, und viele Zacken brechen ab. Ganz zermahlen könnt ihr kleinen Eiskristalle mit blossen Händen aber nicht, sodass immer noch reichlich Luft zwischen den Trümmern bleibt. Und die sind – wie die luftgefüllten Räume dazwischen – so klein, dass man sie mit dem blossen Auge nicht sieht.

Und wenn man nun noch stärker drücken würde?

Beobachtungstipp:

Wenn ihr in einer Gegend seid, in der über längere Zeit sehr viel Schnee liegt und nachschneit (zum Beispiel in einem Skigebiet im Gebirge), betrachtet einmal die aufgestapelten Schneeschichten von der Seite. Das könnt ihr sehr gut, wenn der Schnee sich z.B. auf einer Hecke oder Mauer angehäuft hat: Das Gewicht der oberen Schneeschichten drückt die unteren Schichten zusammen. So werden die unteren Schichten immer dünner und fester.

Damit ergibt sich zum Schluss eine Frage für schlaue Forscher: Was passiert wohl mit den Schneeflocken in den unteren Schichten, wenn immer mehr Schnee oben drauf geschichtet wird…?

Hast du die Experimente nachgemacht: 

[poll id=“14″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Wie Streusalz wirkt - Nutzen und Gefahren im Winterdienst

(Titelbild: CC BY-SA3.0 by Heidas)

Willkommen im neuen Jahr – mit viel Schnee bis in die Niederungen und entsprechend viel Streusalz auf den Strassen. Letzten Samstag habe ich zwei Schneepflügen zugesehen, die in aller Eile unseren Busbahnhof geräumt haben. Dabei fiel mir am Heck jedes Fahrzeugs gleich ein Streuteller ins Auge. Dieses runde Gerät dreht sich fortlaufend und verteilt – die Zentrifugalkraft ausnutzend – Streusalz auf die frisch geräumte Fläche.

Tatsächlich wird in der Schweiz im Vergleich zu anderen europäischen Ländern – besonders wenn man ihre Grösse und Bevölkerung berücksichtigt – nach wie vor ziemlich viel Salz gestreut. Aber warum machen die Städte und Gemeinden das? Wie kann Streusalz verhindern, dass es Glatteis gibt? Und wie sorgt es dafür, dass Eis und Schnee schmelzen?

Was ist Streusalz?

Das Salz, welches gegen Schnee- und Eisglätte gestreut wird, ist tatsächlich nichts anderes als gewöhnliches Kochsalz, also Natriumchlorid, NaCl. In Ländern wie Deutschland, die auf geniessbares Kochsalz eine Salzsteuer erheben, wird das Streusalz „vergällt“. Das heisst, es werden Stoffe hinein gemischt, die das Salz ungeniessbar machen. Deshalb ist Streusalz – das in grossen Mengen gebraucht wird – oft wesentlich preiswerter als Tafel- oder hochreines Labor-Salz.

Wenn das Streusalz auch bei sehr hartem Frost funktionieren soll, wird das Natriumchlorid zudem mit anderen Salzen wie Calciumchlorid, CaCl2, oder Magnesiumchlorid, MgCl2, vermischt. Diese Salze haben auch bei niedrigeren Temperaturen eine auftauende Wirkung.

All diese Salze bestehen aus Ionen, also elektrisch geladenen Atomen, die sich zu einem Gitter – einem Ionenkristall – zusammengelagert haben. In Wasser werden die Ionen jedoch voneinander getrennt: Jedes dieser Salze löst sich in Wasser. Aus Natriumchlorid entstehen dabei Natrium- und Chlorid-Ionen:

NaCl –(H2O)–> Na+(aq) + Cl(aq)

Wie kann Streusalz verhindern, dass Wasser gefriert?

Wenn flüssiges Wasser auf 0°C oder darunter abkühlt, lagern sich auch Wassermoleküle zu Eiskristallen zusammen. Allerdings sind Wassermoleküle nicht elektrisch geladen. Stattdessen sind die Elektronen in solchen Molekülen nicht gleichmässig verteilt, sodass ein Ende eines Wassermoleküls negativer, das andere positiver geladen ist.

Wasserteilchen mit zwei Ladungs-Schwerpunkten
Das Sauerstoff-Ende (rot) eines H2O-Moleküls hat einen negativen, das Wasserstoff-Ende (weiss) einen positiven Ladungsüberschuss.

Das lässt sich übrigens mit diesem spannenden Experiment ganz einfach zeigen.

Die negativ geladenen Enden wenden sich im Eiskristall den positiv geladenen Enden der nächsten Moleküle zu und umgekehrt. So bestimmen die Ladungsüberschüsse in den Wassermolekülen die Form des Eiskristallgitters.

Ein Modell eines Eiskristalls: Die schwarzen bzw. silbernen „Eckstücke“ stellen Wassermoleküle dar, die Verbindungsstäbe stehen für Wasserstoffbrücken zwischen den unterschiedlichen Ladungsschwerpunkten benachbarter Moleküle.

Wenn man nun Kochsalzkristalle („Salzkörner“ sind ganz kleine Kristalle) in flüssiges Wasser mischt, lagern sich die Wassermoleküle mit dem jeweils entgegengesetzt geladenen Ende an die Natrium- und Chlorid-Ionen im Gitter an. Dabei drängen sich die Wassermoleküle derart heftig um die Ionen, dass diese schliesslich aus dem Ionengitter herausgelöst werden! Damit können die einzelnen Ionen vollständig von Wassermolekülen umlagert werden.

Natriumion mit Hydrathülle
Ein Natrium-Ion ist vollständig von Wassermolekülen umgeben, die dem positiv geladenen Ion ihre negativ geladenen Enden zuwenden. An diese innere Hülle lagern sich weitere Wassermoleküle an – das negative Ende wiederum dem Ion zugewandt – an, sodass eine Hydrat-Hülle sehr dick werden kann.

Chemiker sagen, die Ionen sind von einer „Hydrat-Hülle“ umgeben, oder – kurz gesagt – „hydratisiert“ (das „aq“ in der Reaktionsgleichung oben meint genau diesen Zustand: Na+(aq) ist ein Natrium-Ion mit Hydrat-Hülle; „aq“ steht dabei für das lateinische „aqua“ für Wasser).

Wasser ist nicht multitaskingfähig

Damit sind die Wassermoleküle ziemlich schwer beschäftigt. Nicht einmal bei Temperaturen knapp unter 0°C können sie sich von den Ionen losreissen und ihre Plätze in einem Eiskristall einnehmen. Und da die Hydrathülle eines jeden Ions aus weit mehr als einer Molekül-Schicht besteht, ist schnell ein Grossteil aller Wassermoleküle zu beschäftigt, um zu gefrieren. Das Wasser mit den gelösten und hydratisierten Salz-Ionen bleibt also flüssig.

Erst bei Temperaturen unter -21°C (im Labor) bilden sich Mischkristalle, die aus Salz-Ionen und Wassermolekülen bestehen – kurz gesagt: Salzwasser-Eis. Das Kristallgitter von Salzwasser-Eis ist allerdings bei weitem nicht so regelmässig wie das von reinem Wasser-Eis. Das ganze Mischmasch hält einfach weniger gut zusammen. Deshalb ist der Gefrierpunkt von Salzwasser tiefer als der von reinem Wasser. Chemiker und Physiker nennen diesen Umstand „Gefrierpunkterniedrigung“.

Gefrierpunkterniedrigung auf der Strasse

Streut man also Kochsalz auf eine nasse Strasse, so bildet sich auch bei Temperaturen bis zu etwa -10°C kein Eis. Enthält das Streusalz zudem oder stattdessen Calcium- oder Magnesiumchlorid, kann das Wasser auf der Strasse auch bei bis zu -20°C flüssig bleiben. Diese Salze enthalten nämlich Ca2+– bzw. Mg2+-Ionen, die grösser als Na+-Ionen sind. Damit ist das Gitter von Calcium- bzw. Magnesium-Salzwasser-Eis noch unregelmässiger als das von Natrium-Salzwasser-Eis – und hält entsprechend noch weniger gut zusammen.

Und wenn es bereits friert: Wie kann Streusalz Eis schmelzen?

Eiswasser und Le Châtelier: Eine bewegliche Angelegenheit

Erreicht die Temperatur von Wasser (fest oder flüssig) den Gefrierpunkt (bei 0°C) können sich zuvor bewegliche Wassermoleküle zu einem festen Eiskristall zusammenlagern und sich daraus lösen und zu flüssigem Wasser werden. Das heisst: Während an einigen Orten an der Kristalloberfläche neue Moleküle hinzu kommen, werden an anderen Orten andere Moleküle wieder abgelöst. Ob dabei (mehr) Eis entsteht oder schmilzt, hängt davon ab, ob dem Wasser Energie zugeführt oder entzogen wird.

Sobald nämlich flüssiges Wasser und Eis miteinander vorhanden sind, ist das Ganze ein dynamisches (d.h. bewegliches) System, welches dem Gesetz von Le Châtelier gehorcht (das Le Châtelier höchstselbst uns hier am Flughafen erklärt).

Wird dem Eiswasser Energie entzogen (z.B. durch Kühlung), kommen mehr neue Moleküle zum Eis hinzu, als davon abgelöst werden, sodass irgendwann das ganze Wasser zu Eis erstarrt. Wird stattdessen Energie hinzugefügt (z.B. durch Erwärmen), verhält es sich umgekehrt: Es lösen sich mehr Moleküle vom Eis als hinzu kommen, bis das ganze Wasser flüssig ist.

Mit diesem spannenden Experiment könnt ihr feststellen, dass sich die Temperatur des Eiswassers durch Erwärmen tatsächlich nicht ändert, so lange Eis und Wasser miteinander vorhanden sind!

In einer Umgebung ohne sich verändernde äussere Einflüsse (insbesondere ohne Energie-Austausch, was im Alltag ziemlich unrealistisch ist), kann sich sogar ein dynamisches Gleichgewicht einstellen: Wenn stets ebenso viele Wassermoleküle zum Kristall hinzukommen wie sich davon lösen, gefriert und schmilzt das Wasser ständig – aber die Menge des Eises (und des flüssigen Wassers) ändert sich nicht!

Kochsalz übt einen Zwang auf das System aus

Bringt man nun Kochsalz (oder einen anderen Stoff mit „Auftauwirkung“) in ein solches Eiswasser-System, dann wird ein erheblicher Teil Moleküle des flüssigen Wassers mit der Bildung von Hydrat-Hüllen um die Ionen „beschäftigt“. Diese Moleküle „fehlen“ dem Eiswasser-System damit regelrecht. Und gemäss dem Gesetz von Le Châtelier ist das System umgehend darum bemüht, diesen Verlust auszugleichen.

Das Fehlen der flüssigen Wassermoleküle führt also dazu, dass sich mehr Moleküle aus dem Eis lösen, um die Fehlenden zu ersetzen. Das sind mitunter so viel mehr Moleküle, dass insgesamt mehr Wasser flüssig wird als gefriert – obwohl ohne Salz mehr Wasser gefroren wäre! So kann die Gegenwart von Streusalz selbst bei Temperaturen unter 0°C Eis zum Schmelzen bringen.

Wie kommt man bei Frost zum dynamischen System?

Wenn ihr gut aufgepasst habt, werdet ihr jetzt vielleicht einwenden, dass das Auftauen nur funktionieren kann, wenn Eis und flüssiges Wasser vorhanden sind. Und letzteres gibt es bei Frost naturgemäss nicht!

Guter Einwand. Aber die Verwender von Streusalz wissen das natürlich auch. Deshalb streuen sie das Salz gleich mit flüssigem Wasser – als pflotschigen Salz-Matsch oder gar als mehr oder weniger flüssige Salzlösung – also als „Sole“ wie die Fachleute so etwas nennen.

Ausprobieren könnt ihr das Ganze hingegen mit trockenem Salz – in eurer warmen Wohnung. Da beginnt Eis nämlich von selbst zu schmelzen und bekommt so eine feuchte Oberfläche. Wie könnt ihr das nutzen? Das zeige ich euch in dieser ganz herzigen Experimentier-Anleitung.

Wie schadet Streusalz der Umwelt?

So nützlich Auftausalz auch ist, bringt es doch eine ganze Reihe von Problemen für die Umwelt, in die es ausgebracht wird, mit sich.

Beeinträchtigung von Gewässern

Die grossen Mengen an Salzen, die auf Strassen und Wege gestreut werden, lösen sich äussert gut in Wasser. Das sollen sie ja auch, denn sonst würde das Ganze nicht funktionieren. Die Salzlösung, die aus Schneematsch und tauendem Eis entsteht, kann jedoch ebenso leicht wie ablaufendes Wasser in umliegende Gewässer geraten. Und Salzwasser hat eine höhere Dichte als das normalerweise dort vorhandene Süsswasser: Ein Volumen an Salzwasser ist schwerer als das gleiche Volumen Süsswasser!

Ein natürliches Gewässer, das aus mehreren Wasserschichten unterschiedlicher Temperatur und Dichte besteht (die Dichteanomalie des Wassers führt dazu, dass reines Wasser bei rund 4°C die grösste Dichte hat), kann durch den Zufluss von Salzwasser von gestreuten Strassen eine oder mehrere neue Schicht/en erhalten. Solche neuen oder veränderten alten Schichten bringen die natürliche, temperaturgesteuerte Umwälzung der Wassermassen im Gewässer durcheinander, was die Verteilung von Sauerstoff und Nährstoffen beeinträchtigt und damit die Lebewesen im Gewässer gefährdet.

Schädigung von Bäumen und anderen Pflanzen

Die Gewächse im Binnenland und in Süssgewässern sind daran angepasst, dass sie Süsswasser „trinken“ und ihre Nährstoffe daraus beziehen können. Das heisst, der Austausch von Wasser und darin gelösten Stoffen zwischen Wurzeln oder Blättern und ihrer Umgebung, der auf Osmose beruht (die ihr hiermit genauer erforschen könnt) ist fein auf einen geringen Salzgehalt abgestimmt.

Kurz gesagt nehmen viele Pflanzen- (und andere) Zellen um so mehr Wasser auf, je mehr Salze sie enthalten – und geben Wasser ab, wenn draussen mehr Salze sind als in ihrem Inneren. Das gilt jedoch nicht für Wurzeln, die Wasser mitsamt der darin enthaltenen Mineralstoffe (die nichts anderes als Salz-Ionen sind) aufnehmen sollen, von welchen die Pflanze sich ernährt.

Geraten diese Pflanzen nun unverhofft an Salzwasser von gestreuten Strassen, „trinken“ sie das Wasser mitsamt dem vielen Salz. Das wiederum wird in die verschiedenen Pflanzenzellen verteilt und zieht weiteres Wasser nach sich: Die Zellen schwellen an und funktionieren nicht mehr richtig. In Folge dessen kränkeln die Pflanzen und gehen im schlimmsten Fall ein.

Tiere bekommen wunde Pfoten

Wer schon einmal mit einem Kratzer in der Haut im Meer gebadet hat, wird es selbst erfahren haben: Salzlösung tut weh! Sie kann die Haut reizen, besonders an empfindlichen vorgeschädigten Stellen. Wie zum Beispiel in den Zehenzwischenräumen von Säugetieren. Wenn es uns Menschen juckt oder zwickt, dann kratzen wir – die Tiere hingegen lecken solche wunden Stellen mit der Zunge. Im Speichel der Tiere wiederum lauern Keime, die so an die wunden Stellen geraten und Infektionen hervorrufen können, welche zu stärkeren Entzündungserscheinungen führen. Und mehr Salz in diesen Wunden tut wiederum weh, sodass mehr geleckt wird…

Mit dem Haushund oder der Katze können wir zum Tierarzt gehen, Salben auftragen und eine Halskrause anlegen, um das Lecken zu unterbinden – begeistert werden die Haustiere davon aber nicht sein. Und Wildtiere wie Füchse können in der Regel nicht einmal auf diese Hilfe zählen.

Korrosion von Metall- und Betonbauteilen

Vielleicht ist euch ja auch schon einmal aufgefallen, dass man in Häfen oder allgemein an der Meeresküste besonders viel Rost antrifft – tatsächlich rostet Eisen, das Kontakt mit Salzwasser hat, deutlich schneller als Eisen fernab vom Meer.

Das rührt daher, dass Wasser mit darin gelösten Salz-Ionen wesentlich besser elektrischen Strom leitet als Süsswasser oder gar reines Wasser. Und elektrische Leitfähigkeit ist für das Rosten und ähnliche Prozesse, die die Chemiker als „Korrosion“ zusammenfassen, unverzichtbar. Korrosion ist nämliche eine Folge chemischer Reaktionen, bei welchen zwischen den Reaktionspartnern Elektronen ausgetauscht werden. Und Elektronen (oder andere geladene Teilchen) auf Wanderschaft sind…elektrischer Strom.

So können durch salzhaltiges Wasser Elektronen vom Eisen direkt zu dessen Reaktionspartnern wandern, was die Korrosion – das Rosten – besonders einfach macht. Was genau dabei geschieht, könnt ihr übrigens hier in meiner Rostparade nachlesen.

Autos, die über gesalzene Strassen fahren, rosten also ebenso schneller wie Brücken und andere Bauwerke aus Eisen, Stahl oder Stahlbeton, die rund um solche Strassen stehen.

Gibt es Alternativen zum Streusalz?

Da die Probleme, welche das Streuen mit Salz mit sich bringt, den Winterdiensten wohlbekannt sind, gibt es verschiedene Alternativen, die jedoch alle ihren eigenen Haken haben:

Harnstoff oder Ammoniumsulfat

Diese beiden Verbindungen haben eine ähnliche auftauende Wirkung wie Kochsalz und seine schwereren Verwandten. Allerdings enthalten sie Stickstoff (Harnstoff ist CO(NH2)2,Ammoniumsulfat ist (NH4)2SO4 !) in Verbindungen, die für viele Pflanzen sehr nahrhaft sind. Massenweise auf Strassen ausgebracht und im umliegenden Boden versickert können sie daher zu Überdüngung führen. Ausserdem ist auch Ammoniumsulfat eine Ionenverbindung und bringt die gleichen Probleme mit sich wie alle anderen Salze auch.

Abstumpfendes Streugut: Split, Sand, Blähton und ähnliches

Solche Streugüter sind im Prinzip nichts anderes als zerkleinerte Steine – weitgehend wasserunlöslich und unreaktiv. Damit gefährden sie zwar nicht den Stoffwechsel von Pflanzen und Tieren, müssen nach der Verwendung aber wieder eingesammelt und entsorgt werden. Würde man das nicht tun, würden Sand und Steinsplitter irgendwann Rinnsteine und Abflüsse verstopfen.

Und die Entsorgung oder gar Wiederaufbereitung von Streugut ist alles andere als einfach. Nachdem nämlich unzählige Autos darüber gefahren sind, ist das Streugut von Reifenabrieb und anderem Schmutz verunreinigt. Der müsste erst vom Streugut abgeschwaschen und dann seinerseits umweltschonend entsorgt werden.

Was ihr tun könnt, wenn euer Gehweg überfriert

Wenn ihr in Deutschland oder Österreich wohnt, werdet ihr keine grosse Wahl haben. Hier ist nämlich der Einsatz von Streusalz für Privatpersonen verboten (die Winterdienste der Kommunen streuen hingegen bei extremen Wetterbedingungen Salz auf den Strassen).

In der Schweiz gibt es dagegen kein generelles Verbot, sodass ihr hierzulande selbst entscheiden könnt, ob und womit ihr eure Gehwege streut.

Auf eurem privaten Garten- oder Fussweg, fernab von zahllosen Gummireifen, ist abstumpfendes Streugut eine gute Wahl für Pflanzen und Tiere. Ihr werdet es bloss immer wieder nachstreuen und schliesslich wieder einsammeln müssen, sobald Schnee und Eis geschmolzen sind.

Die beste Massnahme gegen Eisglätte auf Wegen und Strassen ist letztendlich das Schneeschippen. Denn was einmal geräumt ist, kann nicht mehr überfrieren und schmilzt im Frühjahr rückstandslos weg. Einzig bei überfrierendem Regen hilft das Schaufeln auch nicht weiter. Aber meiner Erfahrung nach ist das selbst hier in der Schweiz eine Ausnahme-Wettererscheinung.

Bevor ihr irgendetwas streut, empfehle ich euch, erst einmal zu schaufeln was das Zeug hält. Denn ganz ohne den Einsatz von Streugut wird es im heutigen Strassenverkehr kaum mehr gehen. Aber die Menge des dabei verwendeten Streusalzes kann so gering wie möglich gehalten werden. Und dabei könnt ihr alle mitmachen!

Und wie geht ihr gegen Schnee- und Eisglätte vor?

Ein Herz aus Eis

Bald ist Valentinstag, und wieder einmal sind viele darauf aus, die Herzen ihrer liebsten schmelzen zu lassen. Ich habe zu diesem Zweck bei einer englischsprachigen Kollegin ein wunderbar farbenfrohes Experiment aufgestöbert. Damit könnt ihr nicht nur jedes Herz aus Eis zum Schmelzen bringen, sondern gleich erforschen, wie das Schmelzen eigentlich abläuft!

Du brauchst dazu

  • Eine wasserdichte Herzform (zum Beispiel eine Silikon-Kuchenform oder eine gut schliessende Springform
  • Wenn du eine Springform verwendest: etwas Frischhaltefolie
  • Lebensmittel- oder/und wasserlösliche Acrylfarbe
  • Ein grosses Tablett mit Rand, eine flache Wanne oder ein Backblech
  • Platz im Tiefkühlfach für die Herzform
  • Ein Gefäss zum Ausgiessen
  • Leitungswasser
  • Speise- oder Streusalz
  • Etwas zum Umrühren (z.B. einen Rührstab oder Löffel)

Wie du das Herz zum Schmelzen bringst

Dazu muss das Herz erst einmal richtig eiskalt werden! Das schaffst du wie folgt:

  1. Fülle deine Herzform maximal zu drei Vierteln hoch mit Wasser (Mache sie nicht ganz voll! Wasser dehnt sich aus, wenn es gefriert und braucht daher mehr Platz als wenn es flüssig ist!). Wenn du ein rosarotes oder andersfarbiges Herz haben möchtest, rühre etwas Lebensmittelfarbe in das Wasser. Falls du eine Springform verwendest: Probiere vorher mit etwas ungefärbtem Wasser aus, ob sie dicht hält. Falls nicht: Lege die Springform vor dem Einfüllen des gefärbten Wasser mit einem (!) Stück Frischhaltefolie aus.
  2. Stelle die Form mit dem gefärbten Wasser vorsichtig ins Tiefkühlfach und warte etwa einen halben Tag.

Wenn das Herz vollständig gefroren ist, geht es weiter:

  1. Nimm das Herz aus dem Tiefkühlfach, löse das Eis aus der Form (falls es festgefroren ist: spüle die Form kurz mit warmem Wasser ab und drücke das Eis sofort heraus). Falls du Frischhaltefolie zum Abdichten verwendet hast, löse sie so vollständig wie möglich vom Eis.
  2. Lege das Herz auf das Tablett mit Rand. Ich habe weisse Küchentücher untergelegt, damit auf meinem schwarzen Backblech die Farben besser sichtbar bleiben.
  3. Streue Salz auf das Eis-Herz (sei dabei nicht sparsam). Das Eis wird um das Salz herum besonders schnell zu schmelzen beginnen.
    Streue Salz auf das Herz
  4. Verdünne die Acrylfarbe mit etwas Wasser bzw. rühre Lebensmittelfarbe in Wasser ein.
  5. Giesse die farbige Flüssigkeit vorsichtig über das Herz und beobachte.
    Giese Farbe über das gesalzene Herz

Was du beobachten kannst

  • Wenn du das gefrorene Herz aus dem Tiefkühlfach nimmst, wird es bei Raumtemperatur sehr langsam zu schmelzen beginnen.
  • Dort, wo du Salz darauf streust, wird das Eis sehr viel schneller tauen. Mit der Zeit fressen sich regelrecht Ritzen und Spalten in das Eis.
  • Wenn du farbige Flüssigkeit über das schmelzende Eis-Herz giesst, wird sie in und durch die Spalten laufen und die feinen Verästelungen deutlich sichtbar machen.
im schmelzenden Eis - Herz bilden sich Furchen
Hier ist schon einiges weggeschmolzen. Der Boden der Springform hatte eine karierte Struktur, die zu einer sehr regelmässigen Verteilung der Spalten beigetragen hat.
  • Nimm dir Zeit und beobachte das faszinierende Farbenspiel und die filigranen Strukturen, die das schmelzende Eis bildet! Wenn du eine Kamera hast, kannst du auch herrlich surreale Bilder davon machen!
Acrylfarbe auf schmelzendem Eis
Die stark verdünnte Farbe verläuft sich schnell. Mit reiner Acrylfarbe werden die Aushöhlungen und Schluchten noch besser sichtbar!

Wie geht das Schmelzen vor sich?

Alle Stoffe bestehen aus winzigkleinen Teilchen. Die Art und Weise, wie wir die Stoffe wahrnehmen, hängt vom Verhalten dieser Teilchen – und vor allem von den Wechselwirkungen zwischen ihnen – ab.

Feststoff oder Flüssigkeit: Eine Frage der Bewegung

(Wasser-)Eis und Wasser sind ein und derselbe Stoff. Je nach herrschender Temperatur erscheint uns dieser Stoff fest oder flüssig (oder – bei ausreichend hoher Temperatur – sogar gasförmig: als Wasserdampf). Diese Erscheinungsformen – welche Chemiker und Physiker „Aggregatzustände“ nennen – sind das Ergebnis unterschiedlicher Beweglichkeit der winzigen Stoffteilchen.

Im Feststoff sitzt längst nicht alles fest

In einem Eisblock, das heisst bei Temperaturen unter 0°C, sind die Wasserteilchen auf festgelegten Positionen angeordnet. Die Teilchen wechselwirken dabei mit ihren Nachbarn: Anziehung zwischen den Teilchen sorgt dafür, dass sie auf ihrem Platz bleiben, und die Ausrichtung dieser anziehenden Wechselwirkungen (im Fall von Wasserteilchen sind das vornehmlich sogenannte „Wasserstoffbrücken“) bestimmt das Muster der Anordnung. Die Teilchen sind also zu einem sich immer wiederholenden „Gitter“ angeordnet, das wir – wenn es gross genug ist – als Festkörper wahrnehmen: Zum Beispiel als gefrorenes Herz.

Die Stoffteilchen sind allerdings ziemlich unruhige Gesellen. Ständig zittern und zappeln sie auf ihren Plätzen im Gitter herum – je höher die Temperatur des Ganzen ist, desto heftiger. Erst wenn man die Temperatur des Festkörpers auf den absoluten Nullpunkt (also 0 Kelvin oder -273,15°C) senken würde, wären die Teilchen im Gitter vollkommen ruhig.

Flüssigkeiten: Ein lebhaftes Gedränge

In einer Flüssigkeit gibt es keine festen Plätze mehr. Die Wasserteilchen in flüssigem Wasser bewegen sich weitestgehend frei gegeneinander, werden aber durch die anziehenden Wechselwirkungen nah beieinander gehalten. So geht es in der Flüssigkeit zu und her wie in einer bewegten Menschenmenge: Es strömt und fliesst und drängt hierhin und dorthin, und ununterbrochen ist man mit anderen auf Tuchfühlung. Wer schon einmal auf einer Grossveranstaltung wie der Street Parade in Zürich war, weiss, wovon ich schreibe.

Wie eine grosse Menschenmenge werden auch die Teilchen einer Flüssigkeit jeden Behälter, in welchen man sie gibt, bis zur letzten Ecke ausfüllen und sich dabei der Schwerkraft folgend von unten nach oben aufschichten.

Drei Aggregatzustände im Modell
Stoffteilchen in drei Aggregatzuständen, wie du sie im Alltag beobachten kannst: Fest, flüssig, gasförmig

Aus fest wird flüssig: Der Schmelzvorgang

Unser gefrorenes Herz wird im Tiefkühlfach höchstens bis auf schlappe -18°C abgekühlt. Und bei Raumtemperatur wird es dann allenfalls noch wärmer. „Wärme“ ist dabei nichts anderes als die Bewegung der Stoffteilchen: Je wärmer ein Stoff ist, desto grösser ist das Gezappel. Dabei können die herumzappelnden oder -flitzenden Teilchen eines Stoffes ihre Nachbarn anrempeln und ebenfalls in Bewegung versetzen.

Das tun zum Beispiel die Luft-Teilchen, die – wie in einem Gas üblich – völlig ungebunden im Raum herumsausen. Wenn sie auf ihrem Weg gegen die Oberfläche des Eisherzens rempeln, versetzen sie die Wasserteilchen im Gitter in Schwingung: Die Eis-Oberfläche wird wärmer.

Und wenn die Temperatur des Eises dabei 0°C erreicht, kann die Wärme-Energie auf noch andere Weise verwendet werden: Um die Wasser-Teilchen an der Eis-Oberfläche aus dem Gitter zu lösen. Die dafür aufgewendete Energie wird Schmelzwärme genannt – ich habe sie kürzlich hier näher erklärt.

Die aus dem Gitter gelösten Teilchen bleiben zunächst dicht beieinander, bewegen sich dabei aber weitgehend frei: Sie bilden eine Flüssigkeit – flüssiges Wasser.

Ein Festkörper schmilzt also von aussen nach innen, denn von aussen kommt die Wärme und nach aussen können die Flüssigkeits-Teilchen davonfliessen. Dabei ist ein Teilchen im Gitter umso mehr Rempeleien ausgesetzt, je mehr „Seiten“ es hat, die nach aussen weisen. Vorspringende Ecken und Kanten schmelzen also schneller als ein massiver Block, der eine kleine Oberfläche hat, die mit warmer Luft in Berührung kommen kann!

Was das Salz dazu tut

Kochsalz-Teilchen mischen sich sehr gut mit flüssigem Wasser. Das führt dazu, dass die Wasserteilchen aus dem Eis nicht erst bei 0°C, sondern schon bei niedrigeren Temperaturen (bis -17°C !) aus dem Gitter gelöst werden. Wie das vor sich geht, habe ich hier erklärt.

Wenn wir Salz auf unser Herz streuen, lösen sich die Wasserteilchen in der direkten Umgebung der Salzkörner demnach schneller aus dem Gitter. So entstehen zunächst Mulden, dann regelrechte Ritzen und Spalten in der Eis-Oberfläche, an deren Wänden nun viel mehr Wasserteilchen den Rempeleien der wärmeren Luft bzw. des flüssigen Wassers ausgesetzt sind. So wachsen die Ritzen und Spalten schnell weiter.

Wenn wir nun farbige Teilchen (zum Beispiel Acryl- oder Lebensmittelfarbe) mit den Wasserteilchen mischen, werden die Ritzen, durch die das farbige Wasser-Farbstoffgemisch fliesst, sehr gut sichtbar.


Entsorgung

Wasser mit Lebensmittelfarben und Resten von wasserlöslichen Acrylfarben zum Basteln kann in den Ausguss entsorgt werden! Grössere Mengen Acrylfarbe solltest du eintrocknen lassen (oder besser zum Malen verwenden!) und in den Hausmüll geben.

Ideen zum Weiterexperimentieren

  • Du kannst das Experiment natürlich auch zu jedem anderen Anlass bringen: Anstelle der Herzform funktionieren weihnachtliche, Oster- und andere Formen ebenso gut.
  • Du kannst zudem mit verschiedenen Farbtönen experimentieren und (leider recht vergängliche) Eiskunst kreieren und fotografieren.
  • Was ich noch nicht ausprobiert habe: Was geschieht, wenn man das Herz mitsamt Ritzen und Spalten wieder einfriert und später eine andere Farbe zum Giessen verwendet?

Ich wünsche dir viel Spass beim Herzen schmelzen – sowohl derer aus dem Tiefkühlfach als auch derer deines/r Liebsten!

Hast du das Experiment nachgemacht: 

[poll id=“27″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!