Tag Archive for: Farben

13 Experimente im Sommer

Die Sonne verwöhnt uns an langen, warmen Tagen. Ab und zu sorgen lauer Regen oder wilde Gewitter dafür, dass indes alles grünt und blüht. Der Sommer ist eine tolle Zeit für Experimente im Garten oder auf dem Balkon. In Keinsteins Kiste findet ihr viele spannende Anregungen, wie ihr die Natur um euch erforschen, die Sonnenenergie für Experimente nutzen oder einfach draussen Spass haben könnt. Was macht Blätter grün? Welche buchstäblich coolen Experimente eignen sich für heisse Tage? Oder wollt ihr lieber eine Rakete starten?

In dieser Sammlung von Sommer-Experimenten werdet ihr fündig!

Sicherheit – für euch und euren Garten

Wenn ihr draussen experimentiert, beachtet die gleichen Sicherheits-Grundregeln wie beim Experimentieren drinnen: Sucht euch einen spritz- und allenfalls feuerfesten Experimentierplatz, tragt passende Schutzkleidung (Malschürze wie beim Umgang mit Wasserfarben und bei aggressiven Stoffen Schutzbrille) und esst und trinkt nicht dort, wo ihr experimentiert!

Meine Checkliste zum sicheren Experimentieren findet ihr hier in Keinsteins Kiste zum Download.

Wenn ihr draussen experimentiert, habt ihr zudem einen unbestrittenen Vorteil: Für eine gute Belüftung ist immer gesorgt. Achtet aber darauf, dass eure Nachbarn nicht zu sehr unter stinkenden Experimenten leiden, falls ihr solche durchführt. Oder ladet sie einfach zum Mitforschen ein.

Ganz wichtig ist jedoch: Achtet darauf, dass keine flüssigen oder festen Bestandteile eurer Experimente an die Pflanzen oder in den Boden eures Gartens oder eurer Balkonkübel gelangen!

Das gilt besonders für Säuren und Basen wie Essig oder Natron und Seifen! Die können nämlich nicht nur unsere Haut, sondern auch Pflanzenteile beschädigen. Säuren und Basen können in grösseren Mengen zudem den pH-Wert im Boden so verändern, dass das Leben darin gehörig durcheinander gerät.

Seifen, genauer die Tenside darin, stören den Stoffaustausch zwischen Kleinstlebewesen und dem Wasser in ihrer Umgebung. So können sie für das Leben im Boden sehr gefährlich werden.

Sorgt deshalb für eine schützende Unterlage an eurem Experimentierplatz: Eine Maltischdecke, ein Tablett oder Backblech oder eine Plane auf dem Rasen können euch gute Dienste leisten.

Wenn ihr diese Sicherheitsvorkehrungen beachtet, steht dem Experimentierspass ohne Schaden an euch oder eurem Garten nichts mehr im Wege! Also los:

13 Experimente für draussen

Blätter transportieren Wasser – Ein Kontrollversuch macht es sichtbar

Experiment: Blätter transportieren Wasser - und warum ein Kontrollversuch wichtig ist

Mit diesem einfachen Experiment könnt ihr nicht nur sichtbar machen, dass Pflanzen trinken und schwitzen – und auf diese Weise Wasser aus dem Boden (oder einer Vase) in die Luft transportieren. Ihr könnt auch die Bedeutung eines Kontrollaufbaus (einer „Blindprobe“ oder auch einer Kontrollgruppe) für die Bewertung von Versuchsergebnissen aufzeigen. Oft zeigt sich das Ergebnis eines Versuch nämlich erst im Vergleich mit einem Aufbau ohne die entscheidende Zutat richtig deutlich. Das macht solche Kontrollversuche zu einem unverzichtbaren Werkzeug für die grossen Forscher! Da ihr im Sommer reichlich Zweige mit grünen Blättern finden könnt, können auch eure kleinen Forscher einen solchen Vergleich durchführen. Die Anleitung dazu findet ihr hier.

Das geheimnisvolle Leben der Pflanzen

Rund um Pflanzen gibt es ohnehin so viel zu entdecken. Wenn ihr ein Mikroskop habt – schon ein einfaches USB-Mikroskop genügt! – könnt ihr euch den spannenden Aufbau von Blättern ansehen. Unterwegs könnt ihr nach Sonnen- und Schattenblättern oder nach Standort-Spezialisten Ausschau halten. Und wusstet ihr, dass ihr eine Pflanze, die nach einem langen heissen Tag die Blätter hängen lässt, nicht gleich aufgeben müsst? Ihr könnt sie ganz einfach wiederbeleben! Eine ganze Sammlung von Tipps und Anleitungen rund um Pflanzen und ihre Blätter findet ihr hier.

Photosynthese erleben

Blogbild Photosynthese

Pflanzen leben von Luft und Licht…und von Wasser natürlich. Weitere Nährstoffe brauchen sie nur in vergleichweise winzigen Mengen. So kommt es, dass die wilden Gewächse, in die sich selbst unsere Topfpflanzen im Zimmer manchmal verwandeln, uns immer wieder zum Staunen bringen. Das Geheimnis dahinter: Pflanzen bauen aus CO2 und Wasser mit Hilfe von Lichtenergie Kohlenhydrate – die Bestandteile ihrer selbst – auf. Dabei entsteht praktischerweise Sauerstoff als Abfall. Den Vorgang, der dahinter steckt, nennen die Biochemiker Photosynthese. Und ihr könnt nicht nur die Entstehung von Sauerstoff, sondern auch die Bildung von Stärke in Pflanzenteilen einfach nachweisen. Wie das geht, erfahrt ihr hier. 

Raketenstart mit dem perfekt berechneten Treibstoff

Wer eine Rakete starten möchte, braucht möglichst viel Triebkraft bei möglichst wenig Gewicht. Essig und Natron geben einen prima Treibstoff ab, der für euch weitestgehend ungefährlich ist. Hier erfahrt ihr nicht nur, wie ihr aus Abfällen eure eigene Rakete baut, sondern auch wie ihr das perfekte Gemisch für euren Treibstoff ausrechnen könnt. Stöchiometrie nennen Chemiker diese Art zu rechnen. Wenn ihr eure Startrampe auf dem Rasen errichtet, empfehle ich euch eine Plane darunter zum Schutz des Grüns. Denn der Antrieb dieser Rakete beruht zwar darauf, dass Essig und Natron einander neutralisieren. Aber es hat wohl noch kein Raketen-Experiment gegeben, bei dem nicht einmal irgendetwas schief gelaufen wäre!

Spass mit Elefantenzahnpasta

Womit putzen Elefanten sich die Zähne? Mit einer grossen Menge schaumigem Zeug? Könnte man meinen…aber Scherz beiseite. Diesen Schaum solltet ihr besser nicht anfassen – aber Zuschauen allein macht grossen Spass! Auch für diesen Schaumvulkan ist ein Gasentstehung die Triebkraft. Hier sorgt Hefe, die mit Wasserstoffperoxid fertig zu werden versucht, für seine Entstehung. Und damit es richtig schäumt, gehört ein Schuss Seife dazu. Da weder die noch Wasserstoffperoxid gesund für den Garten sind, rate ich auch hier dringend zu einer Auffangwanne. Damit steht dem grossen Spass nichts mehr im Wege. Wie ihr die Elefantenzahnpasta anrichtet – vielleicht in einer grösseren Ausgabe als meiner? – erfahrt ihr hier.

Hefegärung mit Sonnenenergie

Experiment: Gärung - die Superkraft von Hefe

Hefe kann nicht nur blitzschnell Wasserstoffperoxid loswerden, sondern auch, was euren Kuchen zum Aufgehen bringt: Sich ernähren. Die Art und Weise, wie Hefezellen ihre Nahrung „verdauen“, nennt man Gärung. Und dabei entsteht eine richtig grosse Menge CO2. Die kann nicht nur dafür sorgen, dass euer Teig schön fluffig wird, sondern auch einen Luftballon aufblasen. So könnt ihr mit einem solchen die Gärung ganz einfach sichtbar machen! Und da Hefe es gerne lauschig warm hat, liefert die Sommersonne euch die passende Energie dazu. Wie ihr den Versuch macht, erfahrt ihr hier.

Blattfarbstoffe trennen

Wusstet ihr, dass Blätter im Herbst nicht gelb und rot werden, sondern einfach nur nicht länger grün bleiben? Richtig: In einem grünen Blatt sind stets alle seine möglichen Farben enthalten: Grün, Gelb, Rot. Das Grün ist im Sommer bloss derart in der Übermacht, dass es alle anderen Farben überstrahlt. Im Herbst lagern die Pflanzen es jedoch ein, und übrig bleiben Gelb und Rot, bevor ihre Blätter welken und abfallen. Ihr wollt einen Beweis? Mit diesem spannenden Experiment könnt ihr die Farbstoffe aus grünen Blättern trennen und einzeln begutachten! Da ihr dazu Lösungsmittel braucht, ist die gute Belüftung draussen euch dabei ein grosser Vorteil.

Die mysteriöse Pharaoschlange

Dieser faszinierende Partyspass erfordert ein wenig Vorbereitung seitens grosser Forscher – und eine Geheimzutat, die ihr in der Apotheke oder Drogerie kaufen müsst. Welche das ist, verrate ich hier mitsamt der Anleitung und zwei weiteren verblüffenden Experimenten. Das folgende Spektakel lohnt jedoch den Aufwand: Ihr könnt Zucker zum Brennen bringen und beobachten, wie ein mächtiger Aschewurm sich wie von Zauberhand aus dem Sand erhebt und windet! Und wenn ihr das Ganze draussen macht, braucht ihr euch um den Rauchabzug keine grossen Gedanken zu machen. Ein Spass für jede Gartenparty!

Für heisse Tage im Sommer: Herzen schmelzen…

Ein Herz aus Eis

…oder was immer ihr sonst schmelzen lassen wollt. An heissen Tagen sorgt dieses coole Experiment für viel Spass und allfällige Abkühlung. Beobachtet, in welcher Weise Eis schmilzt, beschleunigt den Vorgang mit Salz und erschafft mit bunten Farben surreale Eiswelten. Ganz junge Forscher haben hier ebenso viel Freude wie grössere Kameraleute, die gern farbenfrohe Bilder aufnehmen. Achtet aber darauf, ein Auffangblech oder eine Folie zu verwenden, damit die Farben bleiben, wo sie hingehören und nicht in den Garten laufen! Anleitung und Hintergründe zum Experiment findet ihr hier.

Brausende Herzen schmelzen…mit Essig-Eis

Experiment am Valentinstag: Essigeisherzen in Soda

Für diese Variante des Farbenspiels beim Schmelzen macht ihr Eiswürfel nicht aus Wasser, sondern aus Haushaltsessig! In einer Natron- oder Sodalösung zeigen die beim Schmelzen ihren wahrhaft aufbrausenden Charakter. Mit etwas Tinte oder Lebensmittelfarbe wird das Ganze zudem zu einem weiteren Farbspektakel. Aber bitte nicht trinken – auch wenn sie sich neutralisieren sollten, können Essig und Natron auf Schleimhäute ätzend wirken! Auffangblech oder Plane schützen zudem euren Garten, wenn es hoch her geht. Die Anleitung zum Experiment findet ihr hier.

Eis wächst!

gefrorenes Wasser : Das Glas wird voller

Zur Weiterverwendung zwecks Abkühlung an heissen Tagen ist das Eis aus diesem Experiment geeignet. Wusstet ihr, dass Wasser beim Gefrieren wächst? Das ist eine ganz besondere Eigenschaft dieses allgegenwärtigen Stoffes. Forscher nennen sie auch die „Dichteanomalie“ des Wassers: Sie wissen, dass Wasser bei etwa +4°C am „kleinsten“ ist und, wenn es kälter wird, wieder wächst! Auch dann, wenn es beim Kälterwerden gefriert. Deshalb solltet ihr niemals geschlossene Glasflaschen mit Inhalt ins Gefrierfach legen. Denn wenn der Inhalt zu stark wächst, platzen sie! Wie ihr das Wachstum von Eis ganz ohne Gefahr sichtbar machen könnt, erfahrt ihr dagegen hier.

Kinetischer Sand für drinnen und draussen

Experiment DIY Kinetischer Sand - und wie er funktioniert

Ihr habt Sehnsucht nach dem Strand? Der Sandkasten ist öde geworden? Ihr habt gar keinen Platz dafür? Oder der Sommer ist verregnet? Dann habe ich eine gute Nachricht für euch. Mit diesem Rezept könnt ihr kinetischen Sand ganz einfach selber machen! Mit diesem praktischen Sand können kleine Forscher nach Herzenslust bauen und spielen, ohne dass der berüchtigte Strandferien-Effekt eintritt: Sand überall! Denn diese Sandkörner bleiben beieinander, anstatt sich im Wohnraum zu verteilen. So steht dem Spielspass auf der Terrasse oder sogar drinnen nichts mehr im Wege.

Natur-Bingo für den Sommer-Spaziergang am See

Tier-Bingo am See

Wir haben in diesem besonderen Jahr auf Fernreisen verzichtet und verbringen die Ferien zu Hause. Da gibt es auch so viel zu entdecken! Wenn ihr an einem See oder Teich wohnt oder Urlaub macht, könnt ihr euren Spaziergang durch die Natur dort mit einem spannenden Forscher-Bingo verbinden. Die Anleitung samt Bingokarte zum Ausdrucken findet ihr hier. Wer entdeckt zuerst alle gesuchten Tiere?

Und noch mehr Experimente im Sommer

Viele weitere Versuche in Keinsteins Kiste könnt ihr nicht nur drinnen, sondern ebenso gut auf der Terrasse oder dem Balkon machen. Stöbert und probiert also ruhig nach Herzenslust weiter. Ich wünsche euch viel Spass beim Experimentieren in diesem Forschersommer!

Eure Kathi Keinstein

Und was ist euer Lieblings-Sommer-Experiment? Wenn ihr einen Blog habt oder gerne einmal einen Gastbeitrag schreiben würdet, nehmt damit doch gleich an meiner Jubiläums-Blogparade teil!

Farbkreis mit wandernden Farben

Seid ihr das winterliche Grau in Grau auch so leid wie ich? Dann ist es für uns alle an der Zeit, uns etwas Farbe zu gönnen. Die Blogparade #farbenfroh aus der Reihe #bloggenkunterbunt in Barbaras Paradies kommt da gerade recht. Barbara sammelt nämlich Blogbeiträge, die etwas mit Farben zu tun haben. Und das noch bis Ende Februar!

Farben, Licht und Glanz – Warum die Welt uns bunt erscheint

Farben sind natürlich auch ein grosses und spannendes Thema in den Naturwissenschaften. Wenn ihr euch schon einmal gefragt habt, was Farben sind und warum die Welt uns bunt erscheint, findet ihr hier in meinem ultimativen Artikel zur Physik der Farben die Antwort.

Für die Blogparade sind aber neue Artikel im Februar gewünscht. Deshalb gibt es heute Farbiges für euch zum Mitmachen: Ein faszinierend buntes Experiment. Und alles, was ihr dazu braucht, findet ihr in eurer Küche oder im Supermarkt.

Vom Lichtspektrum…

Die Farbe ist eine Eigenschaft des Lichtes: Je nach seiner Wellenlänge nehmen wir das Licht, das in unsere Augen fällt, in einer bestimmten Farbe wahr. Erst alle Farben miteinander ergeben den Eindruck „weiss“. Wenn man alle Wellenlängen in aufsteigender (oder absteigender) Reihenfolge nebeneinander stellt, erhält man einen wunderschönen Regenbogen: Eine Reihe aller Farben, die ineinander über zu gehen scheinen.

Diese Reihe nennen die Physiker das Spektrum des sichtbaren Lichtes. An seinen Enden geht es in Farben über, die für unsere Augen unsichtbar sind: Infrarot am langwelligen, ultraviolett am kurzwelligen Ende.

…zum Farbkreis

Nun wäre es aber reichlich aufwändig, für jede dieser Wellenlängen eine eigene Sinneszelle zu entwickeln, nur damit wir farbig sehen können. Ganz davon zu schweigen, dass die kaum alle auf unserer kleinen Netzhaut Platz hätten. Deswegen hat der Mensch nur drei Sorten Farb-Sinneszellen – und dahinter geschaltet eine leistungsfähige Rechenmaschine (das Gehirn), welche die Eindrücke der drei Farbspezialisten zu einem Gesamt-Farbeindruck verarbeitet.

Die drei Grundfarben, für welche wir Menschen eigene Sinneszellen haben, haben findige Künstler und Naturphilosophen schon erkannt, bevor sie wussten, was eine Zelle ist oder wie unsere Netzhaut samt Gehirn funktioniert: Rot, Gelb und Blau. Durch das Vermischen von Farbstoffen in diesen drei Tönen lassen sich nämlich alle anderen Farbeindrücke erzeugen. Reines Rot, Gelb und Blau bekommt man hingegen durch Mischen nicht hin.

Und noch etwas haben die Künstler festgestellt: Bestimmte Farbenpaare nebeneinander erzeugen einen besonders starken Kontrast. Diese Farbenpaare werden Komplementärfarben genannt.

(Technisch gesehen sind zwei Farben komplementär, die gemeinsam weiss (wenn farbige Lichtwellen zusammen kommen) bzw. schwarz (wenn die Farbeindrücke durch Auslöschung von Lichtwellen entstehen, sodass das Mischen zur vollständigen Auslöschung führt) ergeben. Die Gesamtheit aller Lichtwellen erscheint also deshalb weiss , weil zu jeder Farbe auch die Komplementärfarbe vorhanden ist.)

Wenn man nun die drei Grundfarben in einem Dreieck anordnet und die jeweiligen Mischungen zweier Grundfarben im Verhältnis 1:1 entlang der Kanten dieses Dreiecks, dann liegen komplementäre Farben einander gegenüber. Das gilt auch, wenn man die nun sechs Farben wieder je 1:1 miteinander mischt und die Ergebnisse zwischen die Ausgangsfarben setzt. So entsteht ein Farbkreis, auf welchem ähnliche Farben nebeneinander und komplementäre Farben einander gegenüber zu finden sind.

Die Herstellung eines solchen Farbkreises mit sechs Farben könnt ihr mit einer spannenden physikalischen Spielerei verbinden:

Experiment: Farbkreis mit wandernden Farben

Wasser und darin gelöste Farbstoffe können sich durch „saugfähiges“ Papier bewegen, wobei die Beweglichkeit der Stoffe von der Beschaffenheit ihrer Moleküle abhängt. Dieser Umstand kann genutzt werden, um Farben zu trennen. Das könnt ihr zum Beispiel ganz einfach mit einem schwarzen Filzstift ausprobieren, oder etwas aufwändiger mit den Farbstoffen in Pflanzenblättern. Die Links führen euch zu meinen Anleitungen dazu.

Heute wollen wir die Lauffähigkeit von Wasser und Farbstoffen aber nutzen, um die Farben zu vermischen.

Ihr braucht dazu

  • Lebensmittelfarben rot, gelb, blau
  • 6 gleichhohe Gläser
  • weisse Papierservietten
  • Bastel- oder Küchenschere
  • Leitungswasser
  • einen Stab zum Umrühren
  • bis zu 24 Studen Zeit

So geht’s

  • Schneidet aus den Papierservietten mehrlagige Streifen, die vom Boden des einen zum Boden des nächsten Glases reichen. Ich habe dazu einfach eine zusammengefaltete Serviette in Streifen geschnitten. Der vorgegebene Falz kann dann auf den Glasrändern platziert werden, und die Enden hängen links und rechts herunter. Ich habe die Streifen dann so gekürzt, dass die Enden etwa 10 bis 15mm auf dem Glasboden aufliegen können.
  • Stellt die leeren Gläser in einem Sechseck auf, nehmt aber die Streifen nach dem Abmessen der Länge wieder heraus.
    Füllt das erste, dritte und fünfte Glas zu mindestens einem Drittel mit Wasser.
  • Löst in einem Wasserglas reichlich blaue, im nächsten gelbe und im dritten rote Lebensmittelfarbe auf. Rührt allenfalls gut um, bis sich die Farbe vollständig im Wasser verteilt hat.
  • Hängt nun die Papierstreifen über die Ränder der benachbarten Gläser: Jeder Streifen soll zu einer Seite in farbigem Wasser, zur anderen Seite in einem leeren Glas hängen. In jedem leeren Glas hängen somit nun zwei trockene Streifen
Der Aufbau zu Beginn des Experiments
  • Und jetzt zum grossen Unterschied zu vielen Varianten dieses Versuchs im Netz: Wartet nicht nur ein bis zwei Stunden, sondern allenfalls einen ganzen Tag ab und schaut euren Farbkreis zwischendurch immer wieder an!

Was ihr beobachten könnt

Das Wasser steigt zunächst zügig in den Serviettenstreifen nach oben. Die Farbstoffe folgen in der Regel deutlich langsamer. Schliesslich überwinden erst das Wasser, dann die Farben den Falz über dem Glasrand und laufen weiter bis zum Boden des nächsten Glases. Wenn ihr lang genug wartet, wird sich buntes Wasser in den leeren Gläsern sammeln, sodass die Farbstoffe sich vermischen!

Farbkreis mit gewanderten Farben nach 24 Stunden
Der Farbkreis nach 24 Stunden: Im Glas zwischen Blau und Rot sammelt sich Violett, im Glas zwischen Blau und Gelb ist das Wasser grünlich, und in der Mitte es Glases zwischen Gelb und Rot lässt sich Orange erkennen.

Wie funktioniert das?

Wie Wasser und Farbstoffe sich durch Papier bewegen, habe ich hier bei der Papierchromatographie mit Filzstiften erklärt. Im Unterschied dazu lassen wir dieses Experiment aber tatsächlich so lange laufen, dass Wasser und Farben durch den ganzen Papierstreifen wandern und schliesslich am anderen Ende wieder herauskommen. Das funktioniert theoretisch so lange, bis der Wasserspiegel in den anfangs leeren Gläsern ebenso hoch ist wie der in den Grundfarben-Gläsern. Dann erst nämlich verursachen die Wassermoleküle in den Misch-Gläsern so viel „Stau“, dass die ganze Bewegung zum Erliegen kommt.

Entsorgung

Lebensmittelfarben sind ungiftig, sodass die Lösungen in den Abluss und die farbigen Papierstreifen in den Restmüll entsorgt werden können. Anstatt sie wegzugiessen, könnt ihr die farbigen Lösungen aber ebenso gut aufheben oder gleich für weitere Experimente verwenden!

Warum dauert der Versuch so lange?

Die Geschwindigkeit, mit welcher die Farben durch die Papierstreifen wandern, hängt ebenso von der Beschaffenheit der Servietten als auch von jener der Farbstoffmoleküle ab. Und es gibt mehr als jeweils eine Sorte Moleküle, die gelb, rot oder blau sein können.

Die Papierservietten, welche ich hier verwendet habe, habe ich auch bei der Trennung von Filzstiftfarben mit vielen Primarschulkindern eingesetzt. Und die Filzstiftfarben liefen innerhalb von wenigen Minuten die Streifen hinauf. Die Lebensmittelfarben (vom Grossverteiler mit dem orangen M) bestehen offenbar aus weitaus sperrigeren Molekülen. In meinen Farben sind das laut Verpackung

  • -Gelb : Curcumin (E 100) – das Gelb der Kurkuma-Wurzel
  • -Rot : Echtes Karmin bzw. Cochenille (E 120) – das Rot aus Cochenille-Schildläusen
  • -Blau : Spirulinaextrakt – ein Farbstoff aus Cyanobakterien („Blaualgen“) der Gattung Spirulina
Der Farbkreis nach 4 Stunden: Die rote Farbe ist deutlich im Papier zu sehen, die gelbe Farbe erscheint am Glasrand noch blass und die blaue Farbe ist dort noch kaum zu sehen. Erst später werden die Farben intensiver und mischen sich in den vormals leeren Gläsern.

Das Karminrot wandert noch am schnellsten, gefolgt vom Curcumin-Gelb. Das Spirulina-Blau tut sich hingegen ganz schwer. Vielleicht findet ihr ja andere Farbstoffe, die schneller laufen?

Weitere Ideen zum Ausprobieren

-die unterschiedlichen Wandergeschwindigkeiten der Farben sichtbar machen: Mischt alle farbigen Lösungen in einem Glas und hängt einen Papierstreifen hinein. Welche eurer Farben läuft am weitesten hinauf, welche am wenigsten weit?
-probiert das Ganze mit Tinte, Kirschsaft oder anderen farbigen Flüssigkeiten auf Wasserbasis aus: Was läuft in euren Servietten am schnellsten?

Ich wünsche euch ganz viel Spass beim Experimentieren und Farben bestaunen!

Hier findet ihr übrigens noch mehr Farben in Keinsteins Kiste:

Und wie bringt ihr sonst Farbe in euren Februar-Alltag?

Hast du das Experiment nachgemacht: 

[poll id=“11″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Experiment im Frühling: Blumen färben

Endlich macht sich der Frühling bemerkbar, und bis Ostern ist es auch nicht mehr lange hin. Die ersten Blumen zeigen sich draussen, und in den Auslagen der Pflanzenhändler reihen sich Primeln, Zwiebelblumen und andere Frühlingsblüher aneinander. Das ist die Gelegenheit für ein blumiges Experiment, das auch dem Osterfest eine besondere Note geben kann! Bringen wir Farbe in die Blumen!

Blogparade: Kinder sind Forscher!

Anne von X-mal anders hat in ihrer Blogparade dazu aufgerufen, darüber erzählen, wie unsere Kinder ihre Welt erforschen. Denn unsere Kinder sind die Forscher von morgen, die in ein paar Jahren ihre Neugier verwenden, um seltene (und weniger seltene) Krankheiten und Heilungsmöglichkeiten dafür zu erforschen. Schon heute werden immer wieder atemberaubende Möglichkeiten gefunden, mit den verschiedensten Erkrankungen fertig zu werden. Damit das auch in Zukunft so bleibt lohnt es sich allemal, unseren Kindern die Welt der Naturwissenschaften, die hinter solchen Behandlungsmöglichkeiten steht, als spannend zu präsentieren und ihre Neugier darauf zu befeuern.

Da ich Keinsteins Kiste genau dazu geschaffen habe, führt für mich kein Weg an dieser Blogparade vorbei!

Nun, ich habe wohl keine Kinder, aber ich bin auch mal eins gewesen – und ich hatte (und habe noch!) einen richtig echten Physiker-Forscher zum Papa. Da wurde natürlich immer wieder gemeinsam experimentiert.

So ist auch dieses Experiment alles andere als neu. Ich glaube mich daran zu erinnern, dass es vor rund 30 Jahren etwa so bei uns Einzug hielt:

Beim Einkauf im Gartencenter durfte ich mich an der Pflanzenauswahl für den Garten beteiligen. Blaue Hortensien hatten mir es besonders angetan.

Papa daraufhin: „Aber wir haben doch schon Hortensien im Garten…“

Klein-Kathi: „Aber die sind rosa!“ (Und meine Lieblingsfarbe war -und ist- eben blau.)

Papa: „Dann machen wir unsere eben blau – dazu müssen wir keine neuen kaufen.“

Er dachte daran, die Hortensien mit der gewünschten Farbe zu giessen, sodass die Pflanzen den Farbstoff selbst aufnehmen und in ihrem Innern verteilen sollten. Nur ist Papa eben Physiker, und kein Botaniker. Letzterer hätte vermutlich voraussagen können, dass der Plan nicht funktioniert – so wie mein Plan heute, das Ganze frühlingsgerecht mit einer weissen Primel im Topf zu wiederholen, auch nicht funktioniert hat.

Dafür zeige ich euch jetzt, wie ihr tatsächlich Blumen umfärben und dabei beobachten könnt, wie Pflanzen trinken! Denn dank den Angelones habe ich einen passenden Plan B.

Experiment: Wir färben Blumen um

Für die Hortensien vor dem Haus ist es jetzt noch etwas früh. Deshalb habe ich passend zum Frühling einen Strauss weisser Tulpen erstanden: Die gibt es zur Zeit sehr preisgünstig in jedem Gartencenter oder Supermarkt mit Blumenabteilung. Und da Blau nach wie vor zu meinen Lieblingsfarben zählt, sollen auch meine Tulpen blau werden. Und ihr könnt natürlich mitexperimentieren!

Ihr braucht dazu

  • weisse Schnittblumen (Tulpen, Rosen oder auch Gerbera sollen gut funktionieren)
  • Wasserlösliche Tinte (in eurem Lieblings-Farbton), zum Beispiel in Patronen für den Fülli
  • Ggfs. Gummi- bzw. Einmalhandschuhe
  • Eine kleine Vase oder anderes Glasgefäss
  • Ein paar Stunden, ggfs. einen Tag Zeit
Alles zum Blumen färben : weisse Tulpen, Tinte, Gewürzgläser

Die leeren Gewürzgläser geben passende Blumenvasen ab. Die Tulpen habe ich weiss gekauft – am Morgen danach waren sie rosa angehaucht. Das bescherte mir am Ende zweifarbige Blüten!

Wie ihr das Experiment durchführt

  • Kürzt die Schnittblumen auf eine zu eurer Vase passende Länge (falls sie schon passend lang sind, schneidet in jedem Fall die Stiele frisch an!), entfernt überflüssige Blätter und stellt sie in die Vase
  • Löst die Tinte in etwas Wasser auf (wer keine blauen Finger mag, sollte dabei Handschuhe tragen). Die Lösung sollte kräftig gefärbt sein, da sie sich später in der ganzen Pflanze verteilen wird.
Tinte zum Blumen färben: Taucht die Patrone kopfüber ins Wasser und erlebt ein faszinierendes Extra

Schneidet den schmalen Teil der Tintenpatronen ganz oben ab und taucht die Patrone kopfunter in euer Wasserglas. Dann könnt ihr beobachten, wie die Tinte – sie ist dichter als Wasser – von selbst hinausläuft und faszinierende Schlieren formt!

  • Füllt das farbige Wasser in die Vase mit den Blumen.

Vorher : Die Blumen zum Färben stehen in Vasen mit Tinte in Wasser

  • Wartet ein paar Stunden bzw. bis zum nächsten Tag – schaut währenddessen immer mal wieder nach den Blumen. Mit der Zeit wird die Farbe in die Blüten und Blätter übergehen!

Was passiert da?

Ihr könnt an diesem Experiment wunderbar beobachten, wie Pflanzen trinken! Anlässlich weiterer Experimente zur wunderbaren Welt der Pflanzen habe ich ausführlich erklärt, wie das von statten geht: Pflanzenstiele, Blätter und Blütenblätter sind von feinen „Rohrleitungen“ durchzogen, ähnlich unseren Blutgefässen. Durch diese Gefässe können sie Wasser von den Wurzeln bis in jeden beliebigen Pflanzenteil transportieren.

Die Adern in den Blütenblättern sind deutlich blau gefärbt

Einen Tag später : Die Wasserleitungen in den Blütenblättern sind deutlich blau gefärbt!

Und was ist der „Antrieb“ dieser Wasserversorgung?

Pflanzen sind in der Lage zu „schwitzen“: Über Poren in ihren Blattoberflächen geben sie Wasser (-dampf) an ihre Umgebung ab. Dadurch entsteht im Innern der Blätter ein Wassermangel, der neues Wasser von unten – also gegen die Schwerkraft! – durch die Leitungen nachströmen lässt. Dass die Wasserteilchen regelrecht an den Leitungswänden kleben, hilft ihnen entscheidend beim Emporklettern (Physiker nennen das den Kapillareffekt).

Normalerweise sind Wasserteilchen farblos, sodass man sie in den Pflanzen nicht sieht. Wenn aber ein Farbstoff im Wasser gelöst ist, werden die Farbstoffteilchen mit den kletternden Wasserteilchen in die Pflanzen hinauf geschwemmt und sammeln sich vornehmlich am Ende der Leitungen – also ganz oben. Erst durch Rückstau bzw. durch die Ansammlung einzelner Farbstoffteilchen, die früher hängen bleiben, werden die Gefässe auf der ganzen Länge farbig.

Warum funktioniert das nicht mit Topfpflanzen?

Bei frisch angeschnittenen Schnittblumen tauchen die offenen Leitungen in den Stängeln direkt in das farbige Wasser. Wasser- und Farbstoffteilchen können also ungehindert in die Gefässe eindringen.

Topfpflanzen haben dagegen Wurzeln, die in Erde stecken. Die Wurzeln sind Gewebe aus Zellen, die eine Oberfläche bilden, durch die Wasser und Nährstoffe geschleust werden müssen. Ob durch Poren, Kanäle oder einfach durch Zellzwischenräume – die sehr kleinen Wasserteilchen müssen sich dabei durch Engpässe kämpfen, durch welche grössere Farbstoffteilchen nicht unbedingt hindurch passen.

Dazu kommt, dass sich Wasser und Farbstoffteilchen auch in der Pflanzenerde verteilen und darin hängenbleiben. So ist, selbst wenn ein Farbstoff durch die Wurzeln in die Pflanze gelangt, eine wesentlich grössere Menge Farbstoffteilchen nötig, um eine Topfpflanze sichtbar einzufärben, als für das Färben von Schnittblumen. Ganz extrem ist das im Garten, wo der „Topf“ geradezu unendlich gross ist.

Mein Physiker-Papa dachte damals freilich nicht an Zellen und Gewebe. Nachdem ich einst selbst in der Zellbiologie geforscht habe, war ich gespannt, ob Lebensmittel- oder Tintenfarbstoffteilchen in Pflanzenwurzeln eindringen würden. Taten sie nicht – jedenfalls nicht in sichtbarem Umfang.

Woraus besteht Tinte? Eignen sich alle Tinten zum Blumen färben?

Wasserlösliche Tintenfarbstoffe gehören meist der gleichen Molekül-Familie an wie viele Lebensmittelfarbstoffe: Es handelt sich um sogenannte Triphenylmethan-Farbstoffe, wie zum Beispiel „Wasserblau“.

Wie diese Stoffe zu ihrem Namen kommen und was sie farbig macht, habe ich im Artikel über Ostereier-Farbstoffe – unter denen findet man ebenfalls Triphenylmethan-Farbstoffe – genau beschrieben.

Andere Tinten bzw. Tuschen enthalten wasserunlösliche Farbkörner, die sehr viel grösser als Moleküle sind – sogenannte Pigmente. Die Pigmentkörner setzen sich mitunter auf dem Boden eines Tintenfasses ab, sodass man es vor der Benutzung schütteln sollte. Ihrer Grösse wegen eignen sich solche Pigmente weniger zum Pflanzen färben.

Viele (vor allem wasserfeste) Schreiber enthalten zudem Tinten, die sich nur in organischen Lösungsmitteln wie Alkoholen oder Aceton lösen. Die erkennt ihr an dem typischen Geruch nach „Chemie“. Auch solche Tinten sind zum Pflanzenfärben nicht geeignet, weil die meisten organischen Lösungsmittel giftig für Zellen sind – sie bekämen den Blumen also gar nicht gut!

Entsorgung

Wasserlösliche Schreibtinten können im Restmüll entsorgt werden. Ungeöffnete Tintenpatronen oder ein angebrochenes Tintenfass verwendet aber besser noch zum Schreiben oder für weitere Experimente. Kleine Mengen Tintenlösung aus den Blumenvasen könnt ihr auch in den Abfluss geben (vorsichtig, damit keine farbigen Flecken im Spülbecken bleiben) oder für spätere Versuche abfüllen und aufheben.

Wenn die gefärbten Schnittblumen verblüht sind, könnt ihr sie ebenfalls in den Restmüll geben. Wo der Bioabfall verbrannt wird wie in der Schweiz könnt ihr die gefärbten Pflanzen auch in die Biotonne geben.

Ich wünsche euch viel Spass beim Experimentieren! Und verratet uns doch, welche Experimente ihr mit euren Kindern am liebsten macht!

Hast du das Experiment nachgemacht:

[poll id=“22″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Ein Herz aus Eis

Bald ist Valentinstag, und wieder einmal sind viele darauf aus, die Herzen ihrer liebsten schmelzen zu lassen. Ich habe zu diesem Zweck bei einer englischsprachigen Kollegin ein wunderbar farbenfrohes Experiment aufgestöbert. Damit könnt ihr nicht nur jedes Herz aus Eis zum Schmelzen bringen, sondern gleich erforschen, wie das Schmelzen eigentlich abläuft!

Du brauchst dazu

  • Eine wasserdichte Herzform (zum Beispiel eine Silikon-Kuchenform oder eine gut schliessende Springform
  • Wenn du eine Springform verwendest: etwas Frischhaltefolie
  • Lebensmittel- oder/und wasserlösliche Acrylfarbe
  • Ein grosses Tablett mit Rand, eine flache Wanne oder ein Backblech
  • Platz im Tiefkühlfach für die Herzform
  • Ein Gefäss zum Ausgiessen
  • Leitungswasser
  • Speise- oder Streusalz
  • Etwas zum Umrühren (z.B. einen Rührstab oder Löffel)

Wie du das Herz zum Schmelzen bringst

Dazu muss das Herz erst einmal richtig eiskalt werden! Das schaffst du wie folgt:

  1. Fülle deine Herzform maximal zu drei Vierteln hoch mit Wasser (Mache sie nicht ganz voll! Wasser dehnt sich aus, wenn es gefriert und braucht daher mehr Platz als wenn es flüssig ist!). Wenn du ein rosarotes oder andersfarbiges Herz haben möchtest, rühre etwas Lebensmittelfarbe in das Wasser. Falls du eine Springform verwendest: Probiere vorher mit etwas ungefärbtem Wasser aus, ob sie dicht hält. Falls nicht: Lege die Springform vor dem Einfüllen des gefärbten Wasser mit einem (!) Stück Frischhaltefolie aus.
  2. Stelle die Form mit dem gefärbten Wasser vorsichtig ins Tiefkühlfach und warte etwa einen halben Tag.

Wenn das Herz vollständig gefroren ist, geht es weiter:

  1. Nimm das Herz aus dem Tiefkühlfach, löse das Eis aus der Form (falls es festgefroren ist: spüle die Form kurz mit warmem Wasser ab und drücke das Eis sofort heraus). Falls du Frischhaltefolie zum Abdichten verwendet hast, löse sie so vollständig wie möglich vom Eis.
  2. Lege das Herz auf das Tablett mit Rand. Ich habe weisse Küchentücher untergelegt, damit auf meinem schwarzen Backblech die Farben besser sichtbar bleiben.
  3. Streue Salz auf das Eis-Herz (sei dabei nicht sparsam). Das Eis wird um das Salz herum besonders schnell zu schmelzen beginnen.
    Streue Salz auf das Herz
  4. Verdünne die Acrylfarbe mit etwas Wasser bzw. rühre Lebensmittelfarbe in Wasser ein.
  5. Giesse die farbige Flüssigkeit vorsichtig über das Herz und beobachte.
    Giese Farbe über das gesalzene Herz

Was du beobachten kannst

  • Wenn du das gefrorene Herz aus dem Tiefkühlfach nimmst, wird es bei Raumtemperatur sehr langsam zu schmelzen beginnen.
  • Dort, wo du Salz darauf streust, wird das Eis sehr viel schneller tauen. Mit der Zeit fressen sich regelrecht Ritzen und Spalten in das Eis.
  • Wenn du farbige Flüssigkeit über das schmelzende Eis-Herz giesst, wird sie in und durch die Spalten laufen und die feinen Verästelungen deutlich sichtbar machen.
im schmelzenden Eis - Herz bilden sich Furchen
Hier ist schon einiges weggeschmolzen. Der Boden der Springform hatte eine karierte Struktur, die zu einer sehr regelmässigen Verteilung der Spalten beigetragen hat.
  • Nimm dir Zeit und beobachte das faszinierende Farbenspiel und die filigranen Strukturen, die das schmelzende Eis bildet! Wenn du eine Kamera hast, kannst du auch herrlich surreale Bilder davon machen!
Acrylfarbe auf schmelzendem Eis
Die stark verdünnte Farbe verläuft sich schnell. Mit reiner Acrylfarbe werden die Aushöhlungen und Schluchten noch besser sichtbar!

Wie geht das Schmelzen vor sich?

Alle Stoffe bestehen aus winzigkleinen Teilchen. Die Art und Weise, wie wir die Stoffe wahrnehmen, hängt vom Verhalten dieser Teilchen – und vor allem von den Wechselwirkungen zwischen ihnen – ab.

Feststoff oder Flüssigkeit: Eine Frage der Bewegung

(Wasser-)Eis und Wasser sind ein und derselbe Stoff. Je nach herrschender Temperatur erscheint uns dieser Stoff fest oder flüssig (oder – bei ausreichend hoher Temperatur – sogar gasförmig: als Wasserdampf). Diese Erscheinungsformen – welche Chemiker und Physiker „Aggregatzustände“ nennen – sind das Ergebnis unterschiedlicher Beweglichkeit der winzigen Stoffteilchen.

Im Feststoff sitzt längst nicht alles fest

In einem Eisblock, das heisst bei Temperaturen unter 0°C, sind die Wasserteilchen auf festgelegten Positionen angeordnet. Die Teilchen wechselwirken dabei mit ihren Nachbarn: Anziehung zwischen den Teilchen sorgt dafür, dass sie auf ihrem Platz bleiben, und die Ausrichtung dieser anziehenden Wechselwirkungen (im Fall von Wasserteilchen sind das vornehmlich sogenannte „Wasserstoffbrücken“) bestimmt das Muster der Anordnung. Die Teilchen sind also zu einem sich immer wiederholenden „Gitter“ angeordnet, das wir – wenn es gross genug ist – als Festkörper wahrnehmen: Zum Beispiel als gefrorenes Herz.

Die Stoffteilchen sind allerdings ziemlich unruhige Gesellen. Ständig zittern und zappeln sie auf ihren Plätzen im Gitter herum – je höher die Temperatur des Ganzen ist, desto heftiger. Erst wenn man die Temperatur des Festkörpers auf den absoluten Nullpunkt (also 0 Kelvin oder -273,15°C) senken würde, wären die Teilchen im Gitter vollkommen ruhig.

Flüssigkeiten: Ein lebhaftes Gedränge

In einer Flüssigkeit gibt es keine festen Plätze mehr. Die Wasserteilchen in flüssigem Wasser bewegen sich weitestgehend frei gegeneinander, werden aber durch die anziehenden Wechselwirkungen nah beieinander gehalten. So geht es in der Flüssigkeit zu und her wie in einer bewegten Menschenmenge: Es strömt und fliesst und drängt hierhin und dorthin, und ununterbrochen ist man mit anderen auf Tuchfühlung. Wer schon einmal auf einer Grossveranstaltung wie der Street Parade in Zürich war, weiss, wovon ich schreibe.

Wie eine grosse Menschenmenge werden auch die Teilchen einer Flüssigkeit jeden Behälter, in welchen man sie gibt, bis zur letzten Ecke ausfüllen und sich dabei der Schwerkraft folgend von unten nach oben aufschichten.

Drei Aggregatzustände im Modell
Stoffteilchen in drei Aggregatzuständen, wie du sie im Alltag beobachten kannst: Fest, flüssig, gasförmig

Aus fest wird flüssig: Der Schmelzvorgang

Unser gefrorenes Herz wird im Tiefkühlfach höchstens bis auf schlappe -18°C abgekühlt. Und bei Raumtemperatur wird es dann allenfalls noch wärmer. „Wärme“ ist dabei nichts anderes als die Bewegung der Stoffteilchen: Je wärmer ein Stoff ist, desto grösser ist das Gezappel. Dabei können die herumzappelnden oder -flitzenden Teilchen eines Stoffes ihre Nachbarn anrempeln und ebenfalls in Bewegung versetzen.

Das tun zum Beispiel die Luft-Teilchen, die – wie in einem Gas üblich – völlig ungebunden im Raum herumsausen. Wenn sie auf ihrem Weg gegen die Oberfläche des Eisherzens rempeln, versetzen sie die Wasserteilchen im Gitter in Schwingung: Die Eis-Oberfläche wird wärmer.

Und wenn die Temperatur des Eises dabei 0°C erreicht, kann die Wärme-Energie auf noch andere Weise verwendet werden: Um die Wasser-Teilchen an der Eis-Oberfläche aus dem Gitter zu lösen. Die dafür aufgewendete Energie wird Schmelzwärme genannt – ich habe sie kürzlich hier näher erklärt.

Die aus dem Gitter gelösten Teilchen bleiben zunächst dicht beieinander, bewegen sich dabei aber weitgehend frei: Sie bilden eine Flüssigkeit – flüssiges Wasser.

Ein Festkörper schmilzt also von aussen nach innen, denn von aussen kommt die Wärme und nach aussen können die Flüssigkeits-Teilchen davonfliessen. Dabei ist ein Teilchen im Gitter umso mehr Rempeleien ausgesetzt, je mehr „Seiten“ es hat, die nach aussen weisen. Vorspringende Ecken und Kanten schmelzen also schneller als ein massiver Block, der eine kleine Oberfläche hat, die mit warmer Luft in Berührung kommen kann!

Was das Salz dazu tut

Kochsalz-Teilchen mischen sich sehr gut mit flüssigem Wasser. Das führt dazu, dass die Wasserteilchen aus dem Eis nicht erst bei 0°C, sondern schon bei niedrigeren Temperaturen (bis -17°C !) aus dem Gitter gelöst werden. Wie das vor sich geht, habe ich hier erklärt.

Wenn wir Salz auf unser Herz streuen, lösen sich die Wasserteilchen in der direkten Umgebung der Salzkörner demnach schneller aus dem Gitter. So entstehen zunächst Mulden, dann regelrechte Ritzen und Spalten in der Eis-Oberfläche, an deren Wänden nun viel mehr Wasserteilchen den Rempeleien der wärmeren Luft bzw. des flüssigen Wassers ausgesetzt sind. So wachsen die Ritzen und Spalten schnell weiter.

Wenn wir nun farbige Teilchen (zum Beispiel Acryl- oder Lebensmittelfarbe) mit den Wasserteilchen mischen, werden die Ritzen, durch die das farbige Wasser-Farbstoffgemisch fliesst, sehr gut sichtbar.


Entsorgung

Wasser mit Lebensmittelfarben und Resten von wasserlöslichen Acrylfarben zum Basteln kann in den Ausguss entsorgt werden! Grössere Mengen Acrylfarbe solltest du eintrocknen lassen (oder besser zum Malen verwenden!) und in den Hausmüll geben.

Ideen zum Weiterexperimentieren

  • Du kannst das Experiment natürlich auch zu jedem anderen Anlass bringen: Anstelle der Herzform funktionieren weihnachtliche, Oster- und andere Formen ebenso gut.
  • Du kannst zudem mit verschiedenen Farbtönen experimentieren und (leider recht vergängliche) Eiskunst kreieren und fotografieren.
  • Was ich noch nicht ausprobiert habe: Was geschieht, wenn man das Herz mitsamt Ritzen und Spalten wieder einfriert und später eine andere Farbe zum Giessen verwendet?

Ich wünsche dir viel Spass beim Herzen schmelzen – sowohl derer aus dem Tiefkühlfach als auch derer deines/r Liebsten!

Hast du das Experiment nachgemacht: 

[poll id=“27″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

DIY-Experiment: Entdecke verborgene Farben!

Farbenfrohe Papier-Chromatographie – ganz einfaches Experiment für die jüngeren Forscher

Das neue Jahr mit Keinsteins Kiste ist fulminant gestartet. Es gab nämlich diese Woche eine Premiere: Die Kiste gibt es jetzt nämlich auch zum Anfassen und Mitmachen – als „rollendes Chemielabor“ voller spannender Experimente, das in Schulen und zu Events aller Art kommt (mit mir natürlich). Ihren ersten Einsatz hatte die rollende Kiste am letzten Dienstag im hiesigen Primarschulhaus Steg zum Science-Projekttag der Primar- (d.h. Grund-)schüler, die dort lernen.

Wir haben verschiedene Stoffgemische getrennt – doch an einem Experiment hatten die Kinder besonders Freude: Am Geheimnis des schwarzen Filzstifts. Das ist nämlich überraschend farbig. Und Farben regen die Kreativität von Kindern ganz besonders an. Ich zeige euch heute, wie ihr dieses kleine, schnelle Experiment ganz einfach nachmachen könnt!

Was ihr dazu braucht

  • einen schwarzen, wasserlöslichen (!) Filzstift
  • saugfähiges weisses Papier (z.B. Papierservietten oder Filterpapier)
  • ein Glas mit weiter Öffnung
  • Wäscheklammern
  • gegebenenfalls einen Bleistift oder Schaschlik-Spiess
  • Wasser

Material: Was ihr für die Papierchromatographie braucht

Wie ihr das Experiment durchführt

  • Schneidet euer Papier in Streifen, die etwas länger sind als das Glas hoch ist.
  • Zeichnet mit dem Filzstift einen gut sichtbaren Querstrich auf ein Ende eines Papierstreifens (der Strich darf sich nicht ganz am Rand des Streifens befinden!).

Schwarzer Querstrich auf Serviette

  • Füllt das Glas 0,5 bis 1cm hoch mit Wasser.
  • Taucht das bemalte Ende des Streifens vorsichtig ein wenig ins Wasser ein (der Strich darf nicht mit eintauchen!) und klemmt den Streifen gerade so eingetaucht mit einer Wäscheklammer am Glasrand oder dem quer darüber liegenden Spiess fest.
  • Wartet ab und beobachtet. Der Filzstift-Strich wird sein Geheimnis innerhalb von einigen Sekunden oder wenigen Minuten offenbaren!
Papierchromatographie mit Spiess und am Glasrand

Links: Variante für Gläser mit senkrechtem Rand: Der Papierstreifen ist am Glas befestigt. Rechts: Variante für Gläser beliebiger Form: Der Papierstreifen hängt an einem Stab, der quer über dem Glas liegt.

Was geschieht hier?

Stoffe wie Wasser und Filzschreiberfarben bestehen aus unzähligen winzigen Teilchen. Dabei hat jeder Stoff seine eigene Teilchen-Sorte mit eigenen Eigenschaften. Ein DIY-Versuch, welcher zeigt, dass es diese Teilchen gibt, und eine nähere Erklärung zum „Teilchenmodell“ findet ihr hier. Einem Stoff sieht man mit nacktem Auge nicht immer an, ob er aus nur einer oder mehrerer Teilchensorten besteht (und damit eigentlich ein Stoffgemisch ist).

Um herauszufinden, ob man es mit einem Gemisch zu tun hat, und wie viele Stoffe daran beteiligt sind, muss man die Teilchen voneinander trennen und nach Sorten sortieren. Dazu nutzen Chemiker häufig aus, dass die verschiedenen Stoffteilchen sich unterschiedlich schnell bewegen, wenn es mal eng wird.

Viele Feststoffe sind nicht so fest und massiv, wie sie aussehen. Stattdessen sehen sie aus wie ein Stück Emmentaler-Käse oder ein Schwamm – mit vielen, vielen Löchern oder «Poren». Diese Löcher sind so klein, dass wir sie mit nackten Auge nicht sehen können – manchmal fast so klein wie Stoffteilchen. Das Filterpapier von Station 2 ist so ein Schwamm – und andere Papiersorten auch. Deshalb können wir Papier als eine Art Hindernis-Rennbahn für Stoffteilchen gebrauchen!

Die Wettläufer auf dieser Rennbahn sind die Stoffteilchen, aus denen die Flüssigkeit im schwarzen Filzstift besteht. Das aufsteigende Wasser schwemmt die Stoffteilchen aus dem Filzstift-Strich durch das Papier. Die Teilchen, die am leichtesten ihren Weg durch die Poren des Papier-Schwamms finden, kommen dabei am weitesten – die Teilchen, die am langsamsten durch den Schwamm finden, kommen am wenigsten weit!

Die Tinte aus meinem Filzschreiber besteht aus (mindestens) drei leicht trennbaren Farbstoffen: blau, orange und rosarot!

Die Tinte aus meinem Filzschreiber besteht aus (mindestens) drei leicht trennbaren Farbstoffen: blau, orange und rosarot!

Mögliche Varianten zum Ausprobieren

  1. Welches ist das beste Papier? Die Geschwindigkeit, mit welcher die Farbstoffe sich im Papier verteilen, hängt von der Durchlässigkeit des Papiers, also der Dichte der Hindernisse auf der „Rennbahn“ ab. Ein „langsames“ Papier führt zu einer deutlicheren Trennung der Farben, erfordert aber mehr Geduld. Für die grösseren Forscher habe ich das Farbschreiben zur Trennung von Farbstoffen aus Pflanzenblättern vorgestellt und dazu normales Schreibpapier verwendet. Das „Rennen“ darin dauert mindestens eine Stunde – dafür sind die Farbstoffe nachher als klar trenn- und miteinander vergleichbare „Banden“ zu erkennen. Probiert einfach selbst aus, welches Papier sich am besten für eure Zwecke eignet!
  2. Ist einzig schwarze Tinte ein Stoffgemisch? Nicht nur schwarze Filzstifte bergen ein Geheimnis. Wenn ihr andere Filzstifte zur Hand habt, versucht herauszufinden, welche Farben ebenfalls aus mehreren Farbstoffen zusammengemischt sind!
  3. Kunst und Forschen lassen sich vereinen! Nicht nur ein einfacher Strich lässt sich trennen! Ebenso gut könnt ihr Muster auf euer Papier schreiben – oder mehrere Farben auf einem Streifen laufen lassen. Der Fantasie sind keine Grenzen gesetzt!
  4. Und was ist mit wasserfesten Tinten? Das Farbschreiben mit Wasser als „Antrieb“ funktioniert nur mit wasserlöslichen Filzschreibern. Wasserfeste Tinten, zum Beispiel aus Permanent-Markern, CD-Schreibern und anderen Stiften, lösen sich wie die Blatt-Farbstoffe nur in passenden organischen Lösungsmitteln. Wenn ihr solche Tinten trennen möchtet, versucht es am besten mit Ethanol (Brennsprit, Spiritus) oder Aceton (z.B. aus dem Malerbedarf im Baumarkt). Fleckbenzin verdunstet sehr schnell und bringt zusätzliche Gefahren mit sich, weshalb es weniger Achtung! Organische Lösungsmittel sind leicht entzündlich! Niemals in der Nähe von offenem Feuer damit arbeiten!

Ich wünsche euch viel Spass beim Nachmachen – bringt Farbe in den grauen Winter! Und wenn ihr in der Deutschschweiz lebt und rollende Chemielabor hautnah erleben möchtet, findet ihr alle Informationen dazu in meiner Lernkiste!

Hast du das Experiment nachgemacht: 

[poll id=“29″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Farben, Licht und Glanz: Wie Stoffe zu ihrem Aussehen kommen

Es ist Herbst geworden. Die Blätter an den Bäumen färben sich leuchtend gelb, orange oder rot. Am zurückliegenden herrlichen Oktober-Wochenende schien die Sonne vom strahlend blauen Himmel, und wir haben braune Walnüsse aus dem noch saftig grünen Gras unter den Nussbäumen gesammelt.

Aber warum sind all diese Dinge eigentlich bunt? Unter welchen Umständen erscheinen Stoffe uns farbig? Und warum sind andere Stoffe farblos oder sogar durchsichtig, wie Glas? Und warum glänzen wieder andere wie ein blanker Spiegel?

 

Wie wir Farben sehen

Um zu erfahren wie Farben, Transparenz und Glanz entstehen, solltest du wissen wie der menschliche Sehsinn funktioniert. Unsere Augen funktionieren nämlich ganz ähnlich wie eine Kamera: Wir „sehen“ Licht, welches durch unsere Augäpfel (deren Innenleben im Normalfall durchsichtig ist) auf die Netzhaut fällt und dort chemische Reaktionen auslöst. Die Produkte dieser Reaktionen führen zu elektrischen Signalen, die über den Sehnerv an das Gehirn weitergeleitet und dort zu einem Bild interpretiert werden. Die Ausgangsstoffe für die Reaktionen zur Erzeugung eines einfachen „Hell“-, aber auch von Farb-Signalen sind Abkömmlinge von Vitamin A bzw. Retinol, Varianten des „Seh-Stoffs“ Retinal.

Licht ist aber nicht gleich Licht, sondern kommt in unterschiedlichen Wellenlängen, d.h. mit unterschiedlicher Energie daher. Die Bandbreite möglicher Wellenlängen reicht dabei von extrem langwelligen (und energiearmen) Radiowellen bis zu energiereicher Röntgen- oder gar Gamma-Strahlung mit extrem kurzen Wellenlängen. Das menschliche Auge ist in der Lage einen kleinen Teil dieses Spektrums (eine grafische Darstellung des gesamten Licht-Spektrums findest du hier), das „sichtbare Licht“, wahrzunehmen und nach Wellenlängen zu unterscheiden.

Dazu gibt es in der Netzhaut drei verschiedene Arten von Zapfen-Zellen, welche nach ihrer jeweiligen Licht-Empfindlichkeit benannt sind. In den K-Zapfen reagiert eine Retinal-Variante mit kurzwelligem (violetten bis blauen), in den M-Zapfen mit mittelwelligem (blaugrünen bis gelben), und in den L-Zapfen mit langwelligem (orangegelben bis roten) Licht.

Das erinnert nicht umsonst an das gängige RGB-Farbschema zur Darstellung von Farben auf dem Computerbildschirm. Dieses nutzt schliesslich aus, was unser Gehirn tut: Es mischt sich aus den „blau“-, „grün“- und „rot“-Signalen der Netzhaut-Zapfen die gesehenen Farben zusammen. Da sich die Wellenlängenbereiche, die in den jeweiligen Zapfen Reaktionen auslösen, überlappen, erzeugt jede Wellenlänge ihre ganz eigene Kombination von Signalen, die das Gehirn auf 1 bis 2 Nanometer Licht-Wellenlänge genau bestimmen kann. Wir können damit 200 verschiedene Farbtöne sehen, jeden für sich in unterschiedlichen Sättigungen (Grau-Beimischungen).

Wenn die Netzhaut alle möglichen Farben gleichzeitig, oder zumindest die Signale für zwei „komplementäre“ Farben zusammen empfängt, macht das Gehirn daraus die Information „weiss“.

Farbenkreis: Komplementärfarben liegen einander gegenüber

Im Farbkreis liegen Komplementärfarben einander gegenüber. Nebeneinander nehmen wir sie grösstmöglicher Kontrastwirkung wahr, während das Gehirn ihre Überlagerung als ‚weiss‘ interpretiert. (by Benutzer:Golden arms (von mir erstellt) CC-BY-SA-3.0 via Wikimedia Commons])

Weiss entspricht also keiner eigenen Licht-Wellenlänge, sondern einer Zusammenstellung verschiedener Wellenlängen. Wenn man eine Farbe also als bestimmte Wellenlänge sichtbaren Lichts definiert, ist Weiss keine Farbe.

 

Warum sehen Stoffe bunt aus?

Das Licht, das unseren Tag erhellt, kommt üblicherweise von der Sonne oder von elektrischen Leuchtmitteln und erscheint uns weiss. Tatsächlich ist dieses Tagelicht ein Gemisch von Lichtwellen aller Wellenlängen (nicht nur) im sichtbaren Bereich (für Sonnenlicht gelten einige Ausnahmen, aber das ist eine andere Geschichte!). Wer dafür einen Beweis möchte, besorge sich ein Prisma – das ist ein durchsichtiger, symmetrischer Gegenstand, der das weisse Licht in seine farbigen Bestandteile „bricht“.

Prisma : zerlegt das Licht in seine Farben

Weisses Licht besteht aus Lichtwellen aller Farben: Das weisse Lichtbündel kommt von links unten und wird an der Oberfläche des Prismas teilweise reflektiert (ein kleineres Lichtbündel geht nach oben ab). Der Rest wird beim Austritt aus dem Prisma rechts abhängig von der jeweiligen Wellenlänge gebrochen: Die unterschiedlichen Farben der Lichtwellen werden sichtbar. (by Spigget (Own work) [CC BY-SA 3.0via Wikimedia Commons])

Wenn wir direkt in eine Lampe (aber niemals direkt in die Sonne!!) schauen, sehen unsere Augen das Licht, wie es aus der Glüh- (oder Leuchtstoff-)birne kommt: alle Wellenlängen miteinander, und das Gehirn interpretiert „weiss“. Wenn das weisse Tageslicht aber zunächst auf einen Rasen fällt und dann unser Auge erreicht, nehmen wir „grün“ wahr. Was ist mit dem Licht passiert?

Elektronen bewegen sich im atomaren Hochhaus

Gras enthält Moleküle des Stoffs Chlorophyll, die aus verschiedenen Atomen zusammengesetzt sind. Diese Atome sind (wie alle Atome) mit „Wolken“ umgeben, welche ihre Elektronen enthalten. Im Molekül sind diese Wolken teilweise miteinander verbunden (die Atome „teilen“ ihre Elektronen miteinander, was sie zusammenhält: eine chemische Bindung entspricht solch einer „Gemeinschaftswolke“).

Jedes Elektron, das sich in solch einer Wolke befindet, hat eine ganz bestimmte, der Position „seiner“ Wolke entsprechende Energie, sodass die Elektronenhülle eines Atoms mit einem Hochhaus mit vielen von Elektronen bewohnten (und unbewohnten) Etagen vergleichbar ist. Analog zur klassischen Mechanik, gemäss der jemand, der nach oben will, Energie aufnehmen muss (die Treppe raufgehen ist anstrengend!), entsprechen die „oberen“ Wolken (oder „Orbitale“) im atomaren Hochhaus viel Energie, während „darunter“ Wolken mit weniger Energie zu finden sind.

Fällt nun ein Lichtquant (eine elementare Portion einer Lichtwelle) mit passender Energie auf ein Elektron in einer niedrigen Wolke, kann das Elektron mit dieser Energie in eine höher gelegene, leere Etage umziehen. Das Lichtquant entspricht also einer Schlüsselkarte für den Fahrstuhl, welche diesen veranlasst eine bestimmte Strecke nach oben zu fahren. Wenn sich genau dort eine Fahrstuhltür zu einer leeren Etage öffnet, kann das Elektron aussteigen und einziehen (wenn nicht, d.h. wenn der Fahrstuhl an seinem Ziel vor einer Wand halten würde, tritt es die Fahrt erst gar nicht an).

Anregung von Elektronen durch Lichteinfall: Das Schema stellt stark vereinfacht die Besetzung von Energieniveaus bzw. „Etagen“ im atomaren Hochhaus durch Elektronen (blaue Kreise) dar. Die Energie von sichtbarem Licht, das auf ein Atom im Grundzustand (1) fällt, entspricht genau dem markierten Abstand zum übernächsten Energieniveau (blauer Pfeil). Das Elektron absorbiert das Licht und zieht um in den angeregten Zustand (2). Der Weg zurück in den Grundzustand (3) verläuft für dieses Elektron in zwei Schritten über das Zwischengeschoss: Die entsprechenden Energien bzw. Licht-Wellenlängen liegen im Infrarot-Bereich und sind damit nicht sichtbar.

 

Die Energie des Lichtquants wird bei einem erfolgreichen Umzug vom Elektron absorbiert, also „geschluckt“, und wird erst wieder abgegeben, wenn das Elektron wieder in seine vorherige, tiefer gelegene Etage zurückkehrt (da es dazu häufig die „Treppe“ benutzt und die Energie auf dem Weg über Zwischengeschosse in kleineren, also langwelligeren, für uns unsichtbaren Portionen (im Infrarot-Bereich) abgibt, sehen wir das einmal absorbierte Licht oft nicht mehr wieder).

Das Farben-Hochhaus des Chlorophylls

Die Abstände zwischen den Wolken-Etagen eines Chlorophyll-Moleküls sind nun genau so beschaffen, dass vornehmlich „rote“ Lichtquanten die Elektronen zu einer höher gelegenen Aufzugtür und damit auf ein höheres Energieniveau befördern können. Wenn also weisses Licht auf das Chlorophyll im Gras fällt, werden darin enthaltene rote Lichtwellen von aufzugfahrenden Elektronen geschluckt. Alle übrigen Wellen werden unverrichteter Dinge wieder zurückgeschickt (reflektiert) und können in unser Auge gelangen und als „alles ausser rot“ empfangen werden. Und das Signal für „alles ausser rot“ entspricht für das Gehirn „grün“.

Wenn wir einen farbigen Gegenstand sehen, weil er von weissem Licht beleuchtet wird, sehen wir also den Rest des weissen Lichts, der nicht von den Elektronen im Gegenstand geschluckt bzw. absorbiert worden ist.

Manche Stoffe haben genügend verschiedene Wolken-Etagen, um Lichtwellen aller sichtbaren Wellenlängen zu schlucken, sodass keine davon unser Auge erreicht. Solche Stoffe erscheinen uns schwarz. Damit ist Schwarz streng genommen auch keine Farbe, sondern einfach „dunkel“ bzw. „kein Licht“. Andere Stoffe, die (mangels passender Etagen-Abstände) gar kein sichtbares Licht absorbieren können, erscheinen uns dagegen weiss.

Was farbig leuchtet

Selbst leuchtende Stoffe funktionieren übrigens genau umgekehrt. Die orange-gelb strahlenden Strassenlaternen, die man mancherorts findet, enthalten zum Beispiel Natrium-Atome, deren Elektronen mittels der Energie aus elektrischem Strom nach „oben“ umziehen, d.h. angeregt werden. Anschliessend fahren sie mit dem Fahrstuhl wieder nach „unten“ auf ihre Ausgangs-Etage (den Grundzustand) und geben dabei je ein Lichtquant mit der zugehörigen „gelben“ Wellenlänge ab (genauer gesagt gibt es im Natrium-Atom zwei sehr ähnliche „gelbe“ Abstände, die so überbrückt werden können).

Wenn wir etwas farbig leuchten sehen, nehmen wir Licht mit genau den Wellenlängen wahr, die von angeregten Elektronen bei der Rückkehr in den Grundzustand abgegeben bzw. emittiert worden sind.

Dass wir auch im gelben Licht einer Natrium-Lampe erkennen, dass ein Stück Papier weiss ist, obwohl es nur gelbes Natrium-Licht an unser Auge weiterschicken kann, haben wir übrigens der Photoshop-Software unseres Gehirns zu verdanken, die weiss, dass das Papier weiss zu sein hat und das empfangene Bild entsprechend bearbeitet.

 

Warum glänzen Metalle?

Ein Stück Metall besteht aus einem einzigen Riesenverbund gleichartiger Atome, die sich allesamt eine Riesen-Elektronenwolke teilen (Chemiker sprechen hier gern von einem „Elektronen-Gas“). Solch eine Wolke, die Etagen aller daran beteiligten Atome umfasst, kommt auf so viele dicht beieinander liegende Wolken-Etagen bzw. Energieniveaus, dass sich diese gar nicht mehr auseinanderhalten lassen.  Entsprechend können sich die Elektronen des Metalls frei in der Riesenwolke bewegen und jede sichtbare Licht-Wellenlänge zum Umziehen absorbieren.

Demnach sollten Metalle also schwarz sein (nur sehr wenige Metalle, vornehmlich Gold und Kupfer, haben dennoch eine Farbe). Die freie Beweglichkeit erlaubt den Elektronen jedoch auch, ebenso leicht mit dem Fahrstuhl nach unten zu fahren wie sie nach oben gekommen sind, sodass sie ein absorbiertes Lichtquant bei ihrer Rückkehr in die untere Etage unverändert wieder abgeben können. Wenn das an einer polierten, d.h. gleichförmigen Oberfläche aus gleichartigen Atomen passiert, kommt das Licht genauso wieder zurück, wie es auf die Oberfläche getroffen ist.

Fällt solches Licht von einer Lichtquelle zuerst auf unser Gesicht, dann auf eine glatte Metalloberfläche und schliesslich zurück in unser Auge, sehen wir uns selbst in einem „Spiegel“. Deshalb wird „Metallglanz“ auch „Spiegelglanz“ genannt. Manche Mineralien (besonders solche, die viele Metallatome enthalten), sind reinen Metallen in ihrem Aufbau übrigens so ähnlich, dass sie ebenfalls Spiegelglanz zeigen, obwohl sie chemisch keine Metalle, sondern Ionenverbindungen sind.

Pyrite-49354

Pyrit oder „Katzengold“ ist ein Mineral, das aus Eisen- und Schwefel-Ionen besteht. In seinem Aufbau ist es einem Metall dennoch so ähnlich, dass die glatte Oberfläche der Kristalle das Licht spiegelt. (by Rob Lavinsky, iRocks.com – CC-BY-SA-3.0 [CC BY-SA 3.0], via Wikimedia Commons)

Metalle glänzen, weil ihr „Elektronen-Gas“ sichtbares Licht nicht nur uneingeschränkt absorbieren, sondern ebenso wieder abgeben kann. An einer glatten, gleichförmigen Oberfläche wird das Licht somit genauso reflektiert, wie es gekommen ist.

 

Warum ist Glas durchsichtig?

Ein Stück Glas ist chemisch ähnlich aufgebaut wie ein Quarzkristall (der ist auch durchsichtig). Beide bestehen aus Silizium- und Sauerstoff-Atomen (in dem Glas, das wir im Alltag nutzen, kommen noch verschiedene andere Elemente dazu, die dem Glas weitere erwünschte Eigenschaften geben), die zu einem einzigen Riesenmolekül verbunden sind.

Im Kristall sind Atome und Bindungen in einem regelmässigen, sich stetig wiederholenden Gitter angeordnet (das macht einen Kristall aus), während die Atome im Glas zu einem ungeordneten Netzwerk verknüpft sind: Glas ist eine Flüssigkeit, die erstarrt ist, ohne dass die Teilchen darin sich zu einem Kristall hätten ordnen können – eine „unterkühlte Schmelze“.

Quarz_vs_Glas

Aufbau von Quarzkristall und Quarzglas: Im Quarzkristall sind Silizium- (rot) und Sauerstoffatome (blau) regelmässig angeordnet. Im Glas bilden sie ein ungeordnetes Netzwerk. In beiden Stoffen sind die Elektronen fest an ihre jeweiligen Atome gebunden, sodass sie mit sichtbarem Licht nicht wechselwirken können.

Sowohl im Kristall als auch im Glas sind die Elektronen den einzelnen Atomen und Bindungen fest  zugeordnet. Daraus ergeben sich grosse Abstände zwischen den Orbitalen bzw. „Wolken-Etagen“, die vornehmlich mit der Energie von UV-Licht überwunden werden können (tatsächlich ist Glas für UV-Licht „undurchsichtig“: Hinter Glas bekommt man so schnell keinen Sonnenbrand!). Licht mit Wellenlängen im sichtbaren Bereich kann hingegen keine Elektronen im Glas anregen (zum Umziehen bewegen) und geht somit unverändert hindurch.

Anders als in weissen, undurchsichtigen Stoffen wird das Licht in Glas zudem nicht nennenswert gestreut: Eine gleichmässige Streuung von Licht verschiedener Wellenlängen findet nur an Strukturen statt, deren Grösse in der Grössenordnung dieser Wellenlängen liegt – für sichtbares Licht sind das einige hundert Nanometer. Atome und kleine Moleküle, aber auch Atomgruppen in einem Kristall oder Glas sind hingegen mindestens 1000 mal kleiner.

Glas ist also durchsichtig, weil sichtbares Licht weder die richtige Wellenlänge hat, um von den fest verorteten Elektronen des Materials absorbiert, noch um darin gestreut zu werden.

Während es draussen zunehmend grauer und dunkler wird, werden die Oktober-Geschichten in Keinsteins Kiste ganz im Zeichen von Licht und Farben stehen. Macht euch auf spannende Entdeckungen und Phänomene gefasst!

 

Und was ist deine Lieblingsfarbe? Oder bist du vielleicht sogar farbenblind?