Tag Archive for: Botanik

Experiment: Blätter transportieren Wasser - und warum ein Kontrollversuch wichtig ist

Es ist Herbst, und langsam färben sich die Blätter bunt. Sie zu sammeln und aufzuheben macht Freude. Aber wenn man nicht achtgibt, rollen sie sich nur zu schnell ein und werden spröde. Aber warum werden lose Blätter trocken? Weil sie nichts mehr zu trinken haben, ist eine naheliegende Antwort. Aber nicht die einzige: Dazu kommt, dass Blätter ständig Wasser an die Luft abgeben – als Wasserdampf, der von ihrer Oberfläche verdunstet.

Dieses Experiment zeigt, wo Pflanzen das Wasser hernehmen – und dass sie es tatsächlich von einem Ort an einen anderen befördern können.

Ihr braucht dazu

  • 2 gleiche Gläser
  • Wasser
  • einen Zweig mit grünen Blättern
  • etwas Speiseöl
  • ggfs. Pasteurpipette (z.B. Deckel einer Nasentropfen-Flasche)
Links: Glas mit einem Blatt einer Glyzine („Blauregen“), Rechts: Kontrolle ohne Blatt
Ich habe Olivenöl verwendet, dass eine gelbliche Farbe hat. Andere Speiseöle sind weniger farbig, funktionieren aber ebenso.
Bei dem dünnen Blattstiel hätte ich aber ewig warten können…

So geht’s

Füllt die Gläser etwa zwei Drittel hoch mit Wasser. Die Füllhöhe soll dabei in beiden Gläsern gleich sein. Schneidet den Zweig am unteren Ende schräg an und stellt ihn in ein Glas. Bedeckt nun die ganze Wasseroberfläche in beiden Gläsern mit einer Schicht Speiseöl. Eine Pipette kann beim sauberen Dosieren helfen. Ausserdem könnt ihr mit der Pipettenspitze das Öl zum Glasrand hin verstreichen, bis es daran kleben bleibt. Stellt anschliessend beide Gläser für einige Stunden, besser einen Tag lang an die Sonne oder in einen warmen Raum.

Mit einem verholzten Zweig vom Kirschbaum samt sieben Blättern konnte ich schliesslich doch einen Effekt beobachten…

Was ihr beobachten könnt

Der Wasserspiegel im Glas mit dem Zweig sinkt mit der Zeit, während jener im Glas ohne Zweig unverändert bleibt.

Nach zwei bis drei Stunden an der Sonne steht das Wasser im Glas mit den Zweigen 1 bis 2 Millimeter weniger hoch als im Kontrollglas.
Nach einem zusätzlichen Tag im Innenraum fällt das Ergebnis noch deutlicher aus: Der Unterschied beträgt jetzt mehr als 5 Millimeter!

Was passiert da?

Blätter geben über kleine Poren (Spaltöffnungen) an ihrer Oberfläche ständig Wasser(-dampf) an die Luft ab.

Blätter unter dem Mikroskop, mit sichtbaren Spaltöffnungen
Dies ist die untere Aussenhaut eines frischen Blattes meiner Tomatenpflanze bei 100-facher Vergrösserung. Die winzigen Spaltöffnungen (sie sind ca. 0,05 – 0,1 mm klein!) sind als dunkelgrüne Punkte gut erkennen (die Ränder der Spalten enthalten den grünen Blattfarbstoff Chlorophyll, die übrigen Aussenhautzellen nicht). Diagonal durch das Bild verläuft eine „Blattader“, d.h. Leitungsbündel, in dessen Umgebung ebenfalls chlorophyllhaltige Zellen haften geblieben sind.

Durch den Wasserverlust entsteht ein Unterdruck, der über die Wurzeln der Pflanze Wasser aus dem Boden nach oben saugt. Als Leitungen dienen dabei dünne Röhren im Inneren der Stängel sowie die „Adern“ in den Blättern. Da der geschnittene Zweig weder Wurzeln noch Boden hat, wird das Wasser im Experiment direkt aus dem Glas gezogen. Mit dem Stängel werden nämlich auch die Röhren darin angeschnitten, sodass sie nun offen ins Wasser ragen. Mit dem schrägen Schnitt vermeidet ihr, dass die Öffnungen der Röhren flach auf den Glasboden gedrückt und so verschlossen werden.

Warum rollen sich trockene Blätter nun ein?

Einen guten Teil des in die Blätter hinauf gesogenen Wassers gibt die Pflanze nicht sofort wieder ab. Stattdessen speichert sie es in kleinen Hohlräumen (Vakuolen) in ihren Zellen. Sind die Vakuolen prall gefüllt, sind auch die Zellen prall und das Blatt erscheint straff und fest.

Wenn der Wassernachschub ausbleibt, werden die Vakuolen zunehmend entleert: Die Blätter werden zunächst schlaff (dieser Teil lässt sich umkehren und die Pflanze „wiederbeleben“ – wie genau, erfahrt ihr hier). Wenn die Wasservorräte ganz verbraucht sind, können die Blattzellen nicht mehr funktionieren und sterben ab. Ohne pralle, formgebende Wasserspeicher fallen die „Skelette“ der sterbenden und toten Zellen regelrecht in sich zusammen, sodass das Blattgewebe krumm und spröde wird.

Und wozu das Speiseöl?

Das Speiseöl verhindert, dass Wasser über die Wasseroberfläche verdunstet. So muss das Wasser, das im Glas mit dem Zweig fehlt, von dessen Blättern „ausgeschwitzt“ worden sein!


Ein Forschertrick: Sichere Ergebnisse durch Kontrollversuche

Das zweite, leere Glas dient als direkte Vergleichsmöglichkeit: Ihr könnt den Unterschied zwischen einem Glas mit Verdunstungsmöglichkeit über einen Zweig und einem Glas, aus dem nichts verdunsten kann, auf einen Blick sehen. So könnt ihr

  1. auch kleine Unterschiede rasch erkennen.
  2. sicher gehen, dass ihr den Zweig auch dann „schwitzen“ seht, wenn doch etwas Wasser durch das Öl verdunsten sollte. Das geschähe dann nämlich in beiden Gläsern in gleicher Weise. Folglich muss ein sichtbarer Unterschied etwas mit dem Zweig zu tun haben.

Auch die grossen Forscher machen Kontrollversuche

In der wissenschaftlichen Forschung sind solche Kontrollversuche von entscheidender Wichtigkeit. Je komplizierter die Versuche nämlich sind, desto mehr Umstände können das Ergebnis beeinflussen. Besonders wenn Lebewesen an Experimenten beteiligt sind, sind Forscher oft gar nicht in der Lage, jeden einzelnen dieser Umstände nachzuvollziehen und seinen Einfluss auf das Ergebnis zu bestimmen.

Ein Kontrollversuch unter möglichst gleichen Bedingungen, aber ohne das Detail, das man untersuchen möchte, zeigt einem die Summe aller zusätzlichen Einflüsse. Wenn das zu untersuchende Detail zu einem davon unterschiedlichen Ergebnis führt, kann man sicher sein, dass eben dieses Detail auch die Ursache dafür ist. Und das, ohne jeden einzelnen Umstand mit Einfluss zu kennen!

Das gilt für einfache Experimente wie den Nachweis eines Stoffs mit einem Reagenz bis hin zu Studien, in welchen Medikamente an Menschen getestet werden.

Mit Kontrollversuchen lässt sich der Placebo-Effekt „ausblenden“

Bei solchen Studien erhält eine zusätzliche Gruppe von Versuchspersonen, die „Kontrollgruppe“ genannt wird, ein Medikament ohne Wirkstoff – ein sogenanntes Placebo. Das menschliche Gehirn ist nämlich ein besonders schwer zu kontrollierender Einfluss auf Versuchsergebnisse: Es lässt uns selbst dann eine Veränderung unseres Befindens wahrnehmen, wenn kein Wirkstoff im genommenen Medikament ist (das nennen die Forscher den Placebo-Effekt)!

Der Placebo-Effekt tritt (wie viele andere Umstände) sowohl bei der Kontrollgruppe als auch bei der Gruppe mit Wirkstoff auf. Wenn das Ergebnis bei der Gruppe mit Wirkstoff trotzdem anders ist als das bei der Kontrollgruppe, hat das mit ziemlicher Sicherheit der Wirkstoff bewirkt. Gibt es dagegen keinen Unterschied zwischen der Gruppe mit Wirkstoff und der Kontrollgruppe, bewirkt der „Wirkstoff“ ebenso sicher nichts.   


Zusammenfassung

Dieses einfache Experiment zeigt, dass Pflanzen Wasser aus dem Boden (oder einem Glas) „trinken“ und als Wasserdampf an die Luft abgeben können.

Ein Kontrollversuch ohne Pflanze macht diesen Effekt im Vergleich direkt sichtbar. Ausserdem lässt sich mit seiner Hilfe ausschliessen, dass andere Faktoren für das Verschwinden des Wassers aus dem Glas verantwortlich sind. Derartige Kontrollen sind ein äusserst wichtiger Bestandteil wissenschaftlicher Forschung.

Ihr könnt euch die Trink- und Schwitz-Fähigkeit von Pflanzen übrigens direkt zu Nutze machen: Zimmerpflanzen im Raum sorgen dafür, dass auch im Winter die Raumluft nicht zu trocken wird!

Entsorgung

Den Zweig könnt ihr auf den Kompost oder in den Grünabfall geben. Oder ihr lasst ihn als Dekoration im Wasserglas stehen oder verwendet ihn für weitere Blatt-Experimente.

Wasser und Speiseöl könnt ihr in den Ausguss entsorgen. Die Super-Waschkraft von Spülseife hilft dabei, Ölreste von den Gläsern zu entfernen und fort zu spülen. Nicht verwendetes Speiseöl könnt ihr natürlich zum Kochen weiterverwenden.

Oder ihr nehmt bloss den Zweig aus dem Glas und verwendet es samt Inhalt für das Experiment mit der DIY-Lavalampe!

Ich wünsche euch viel Spass beim Experimentieren!

Hast du das Experiment nachgemacht:

[poll id=“7″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Forscher-Abenteuer Raiffeisen-Skywalk

Dieser Beitrag stellt meine persönliche Empfehlung dar – keine der genannten Firmen, Institutionen oder Sponsoren ist an der Entstehung beteiligt!

Naturforschen ist immer auch ein Abenteuer – sei es, weil man dabei immer wieder Spannendes entdeckt, oder weil es schon abenteuerlich ist dorthin zu gelangen, wo es etwas zu entdecken gibt. So zum Beispiel in den für Menschen schwer zugänglichen Kronen der Bäume! Während Dschungelwissenschaftler Klettergerät brauchen oder gleich einen ganzen Baukran aufstellen, um das Dach des Waldes erkunden zu können, ist der Weg zu den Baumkronen für Nachwuchs- und Hobbyforscher in den letzten Jahren sehr einfach geworden: An vielen Orten gibt es einen Baumwipfelpfad oder eine Hängebrücke, auf denen ihr bequem über das Blätterdach spazieren könnt!

Man liebt sie oder man hasst sie: Baumwipfelpfade und Hängebrücken. Eigentlich gibt es nur zwei Optionen. Entweder dir läuft bereits beim Anblick ein Schauer über den Rücken und du bist bereit zu flüchten oder du freust dich bereits auf den Ausblick aus schwindelerregender Höhe.

Ein Bisschen Mut erfordert es in der Tat, in luftiger Höhe zu wandeln. Aber ohne ein kleines Abenteuer wäre das Forschen ja langweilig. Und wenn man sich nach oben traut, gibt es viel Spannendes zu entdecken: Wie sieht die Spitze einer 50-Meter-Fichte aus? Wie wachsen Tannenzapfen? Welche Tiere leben im obersten Stockwerk des Wald?

Baumwipfel von oben

Doch wo könnt ihr euren Mut beweisen und auf Entdeckungsreise in luftige Höhen gehen? Die Reiseeule hat eine tolle Blogparade ins Leben gerufen, um der Vielfalt der Baumwipfelpfade und Hängebrücken gerecht zu werden. Und da steuere ich für euch gerne meine Lieblings-Baumwipfelpfad-Hängebrücke bei mir daheim in der Schweiz bei:

Der Raiffeisen-Skywalk

Oberhalb von Sattel-Aegeri im Kanton Schwyz spannt sich eine atemberaubende Hängebrücke über das Lauitobel, eine mit riesigen Nadelbäumen bestandene Wildbach-Schlucht. Auf der Stahlgitterkonstruktion könnt ihr bis zu 58 Meter über dem Grund des Tobels wandeln – ohne dazu eine Leiter erklimmen zu müssen. Dafür erfordert der Weg Durchhaltevermögen: Mit 374 Metern Länge ist der Raiffeisen-Skywalk eine der längsten Fussgänger-Hängebrücken Europas!

Blick von der Hängebrücke ins Lauitobel

Blick von der Hängebrücke ins Lauitobel

Belohnt werden mutige Forscher, die sich auf die Brücke wagen, mit direktem Blick ebenso auf die Spitzen rund 60 Meter hoher Nadelbäume als auch auf die Wipfel verschiedener Laubbäume an den Enden des Skywalks. Damit ist diese Hängebrücke gleichzeitig ein richtiger Baumwipfelpfad! Ausserdem könnt ihr von dort eine herrliche Aussicht über die Schwyzer Voralpen bis zum Aegerisee und zum Rigi-Massiv geniessen.

Blick auf die Rigi

Blick auf die Rigi von oberhalb des Skywalks

Eine Hängebrücke im Kinderparadies

Obwohl auf 1200 Metern über dem Meer gelegen ist der Raiffeisen-Skywalk ein perfektes Ausflugsziel mit Kindern. Auf den Mostelberg kommt man nämlich ganz bequem mit einer Seilbahn, die geräumig genug ist, um auch Kinderwagen Platz zu bieten. Die Hängebrücke beginnt gleich an der Bergstation praktisch ebenerdig. Auf actionhungrigen Nachwuchs warten dort ausserdem eine Sommerrodelbahn und ein Hüpfburgenparadies. Mit Berggasthäusern, öffentlichen WCs, und einem Trinkwasserbrunnen ist auch für das leibliche Wohl gesorgt. Und im Winter kann man hier Ski fahren.

Mostelberg von oben

Der Brückenkopf und die Spielanlagen an der Bergstation

Wandern in wilder Natur

Trotzdem müsst ihr nicht fürchten, in eine künstliche Touristenwelt zu geraten. Denn nur wenige Schritte genügen, und schon ist man in einem herrlichen Naturparadies, das sich auf vielen Wegen aller Schwierigkeitsgrade bewandern lässt. Asphaltierte, Strässchen führen fast ohne Höhenunterschied durch üppige Bergwiesen, auf denen jetzt im Frühsommer wilde Orchideen blühen, und können mit Kinderwagen begangen werden. Wer trittsicherer und nicht auf Fahrzeuge angewiesen ist, kann auf einfachen Bergwanderwegen (rot-weisse Markierung der Schweizer Wanderwege) in die Bergwildnis vordringen und sogar den Gipfel des Hochstuckli (1566 Meter ü.M.) bezwingen.

Und als ob das noch nicht genug wäre, gibt es noch einen Bonus für Schatzsucher: Fast alle Wanderwege rund um Mostelberg sind dicht mit Geocaches bestückt, sodass Geocacher hier fleissig suchen können (ich gehöre selbst zu dieser Sorte und habe bei meinem jüngsten, mindestens dritten Besuch hier oben noch so manchen Schatz finden können).

Wie ihr zum Skywalk kommt

Wenn ihr bereits in der Schweiz seid, empfehle ich euch die Anfahrt mit dem öffentlichen Verkehr. Zwischen Biberbrugg und Arth-Goldau verkehrt einmal in der Stunde die S31 mit Halt in Sattel-Aegeri. Vom Bahnhof dort seid ihr in 10 bis 15 Minuten zu Fuss an der Talstation der Seilbahn „Stuckli-Rondo“ (dort können Autoreisende auch ihren fahrbaren Untersatz auf einem geräumigen Parkplatz abstellen (aktuell 2 Stunden gratis, darüber hinaus CHF 5.- für den Rest des Tages)). Und die hat es in sich:

Einstimmung in der Drehgondelbahn

Die geschlossenen Gondeln dieser Luftseilbahn drehen sich nämlich um sich selbst, sodass ihr das herrliche Bergpanorama rundum geniessen könnt! Ausserdem ist die Drehgondelfahrt eine perfekte Vorübung für den luftigen Gang über die Hängebrücke. Die aktuellen Fahrpreise findet ihr hier auf der Website zum Ausflugsgebiet. Wer ein Halbtax- oder Generalabo von der Schweizer Bahn (SBB) besitzt, bekommt übrigens bis zu 50% Preisnachlass.

Anfahrt auf die Bergstation der Stuckli-Rondo

Anfahrt auf die Bergstation der Stuckli Rondo – Drehgondelbahn

Auch Kinderwagen sind kein Problem

Die Gondeln sind ebenerdig zugänglich, sodass sie problemlos mit Kinderwagen oder Rollstühlen benutzt werden können. Und wer ein Gondelbahn-Billet hat oder zu Fuss von Sattel-Aegeri hinaufgestiegen ist (unter der Seilbahn verläuft ein Gebirgswanderweg), kann den Raiffeisen-Skywalk kostenlos benutzen.

Gondel der Stuckli Rondo

Eine Gondel der Stuckli Rondo : Genug Platz für Kinderwagen ohne Rollstuhl

Der ist übrigens in seinem engsten Bereich 90cm breit und darf mit Kinderwagen oder Rollstuhl benutzt werden – allerdings nur in eine Richtung, nämlich von der Bergstation weg auf die andere Seite des Tobels! Fussgänger ohne Gefährt können hingegen in beide Richtungen laufen.

Es ist ausserdem möglich, mit dem Auto bis nach Mostelberg zu fahren. Allerdings sind die Parkmöglichkeiten hier oben begrenzt – und für den Skywalk wird ein zusätzlicher Eintritt fällig.

Die beste Reisezeit

Der Raiffeisen-Skywalk liegt auf 1200 Meter ü.M., das Wandergebiet erstreckt sich bis auf über 1500 Meter Höhe. Da ist im Frühling und Herbst noch mit Schnee zu rechnen! Die Drehgondelbahn verkehrt von Mitte April bis Anfang November – die Attraktionen am Mostelberg haben dann auch geöffnet. Wenn ihr das Wandergebiet in seiner Gänze geniessen wollt, achtet darauf, dass auf der gewünschten Höhe kein Schnee mehr liegt. Denn bei Schnee sind einige der Gebirgswege kaum oder gar nicht begehbar.

Ich habe für meinen jüngsten Gang über den Skywalk Ende Mai die erstbeste Gelegenheit genutzt, an der ich auch das Hochstuckli komplett schneefrei umrunden konnte.

Die Hängebrücke wird über Nacht übrigens zugesperrt – genauer gesagt ist sie bis eine Viertelstunde vor Betriebsschluss der Gondelbahn geöffnet. Ihr tut also gut daran, euch die Öffnungszeiten des Tages zu merken und rechtzeitig am richtigen Ende der Brücke zu sein – sonst wird ein beträchtlicher Umweg fällig.

Raiffeisen-Skywalk: Brückenkopf an der Bergstation

Der Brückenkopf an der Bergstation: 15 Minuten vor Betriebsschluss der Gondelbahn werden die Tore geschlossen.

Natur am Mostelberg: Baumwipfelpfad und mehr

Selten ist mir die atemberaubende Höhe unserer einheimischen Fichten so bewusst geworden wie beim Blick vom Skywalk an diesen Bäumen hinunter (anstatt wie üblich hinauf). Jetzt im Frühsommer scheinen die an den Spitzen wachsenden Zapfen zudem zum Greifen nah zu sein.

Fichtenspitze zum Greifen nah

Fichtenspitze zum Greifen nah

Wildpflanzen und -tiere der Schweizer Voralpen

Und jenseits der Hängebrücke gibt es noch viel mehr zu entdecken. Wildrosen und Kabenkräuter – dies sind die wilden Orchideen, die ich bereits erwähnt habe, sind nur zwei Beispiele für aussergewöhnliche Bergpflanzen, die es hier zu entdecken gibt.

Knabenkraut - wilde Orchidee

Ein Knabenkraut – eine wilde Orchidee auf den Wiesen nahe der Hängebrücke

Und wer sich in die Höhe wagt, begibt sich zudem auf eine kleine Zeitreise: Farne und Schachtelhalme, wie sie am Rand der Bergwiesen wachsen, gehören nämlich zu den ältesten noch lebenden Pflanzengattungen der Welt: Schon die Dinosaurier haben sie gekannt und vermutlich auch als Futter geschätzt.

Farn und Schachtelhalm

Aus der Zeit der Dinosaurier: Farn und Schachtelhalm

Wer nach Tieren Ausschau hält, findet allerorts Vögel, Schmetterlinge und andere Insekten (hier oben sind die noch richtig zahlreich). Und vielleicht habt ihr ja so viel Glück wie ich während einer früheren Wandertour, als ich am späten Nachmittag auf der Krete zwischen Mostelberg und Hochstuckli eine kleine Herde Rotwild beim Überqueren des Wanderwegs beobachten konnte!

Rotkehlchen

Überraschend zutrauliches Fotomodell: Das Rotkehlchen auf dem Wanderweg

Der Geomantik-Lehrpfad

Wenn ihr in der Umgebung der Hängebrücke wandert, werden euch wahrscheinlich Infotafeln auffallen, die nach einem Naturlehrpfad aussehen. Warum ich den weiter oben nicht erwähnt habe? Als Naturforscher-Bloggerin tue ich mich mit diesem Pfad ein wenig schwer. Das Leitthema der Tafeln ist nämlich Geomantik bzw. Radiästhesie, die beide mit Naturwissenschaft nicht viel zu tun haben.

Was ist Geomantie?

Die heutige Geomantie bzw. Geomantik ist eine esoterische Lehre über energetische Eigenschaften bzw. „Gitternetzlinien“ der Erde und die daraus folgende „sinnvolle“ Gestaltung von Lebensräumen (gerne wird die Geomantik mit dem chinesischen Feng Shui verglichen). Die Existenz der von Geomantikern angenommenen Energien konnte jedoch nicht wissenschaftlich belegt werden, obwohl entsprechende Versuche unternommen wurden.

Das ist aber nicht der Grund für meine Schwierigkeiten mit den Infotafeln. Im Gegenteil: Eine Erfahrungslehre, welche Art Gestaltung unserer Umgebung uns guttut, möchte ich nicht pauschal als ’schlecht‘ abstempeln, auch wenn die ihr zugrundeliegenden Modelle fragwürdig sein mögen.

Der besteht vielmehr darin, dass auf den Tafeln naturkundliche Inhalte mit den esoterischen Lehren vermengt werden, sodass beide als gleichwertige Fakten dargestellt sind. Naturkundlichen Laien dürfte die Unterscheidung zwischen dem einen und dem anderen oftmals schwerfallen – was meinem persönlichen Bestreben entgegen steht: Naturwissenschaftliches Wissen zu vermitteln, um der Entstehung von mitunter gefährlichem Irrglauben vorzubeugen.

Denn das Vermengen von nicht belegbaren Inhalten mit als belegt geltendem Wissen führt leicht dazu, dass das Nichtbelegbare ebenfalls als anerkannt „richtig“ wahrgenommen und gelernt wird. Und wie schwer es ist, einen einmal angenommenen Irrglauben zu „erschüttern“, zeigen die vielen fruchtlosen Anläufe genau dazu von Wissenschaftler-Kollegen und meiner selbst.

Das Ganze soll aber das atemberaubende Erlebnis des Raiffeisen-Skywalks und seiner Umgebung nicht trüben.

Blick über den Raiffeisen-Skywalk

Der Raiffeisen-Skywalk: Der Blick über die Baumwipfelpfad-Hängebrücke

Weitere Baumwipfelpfade und Hängebrücken in der Schweiz

Wer nach dem Gang über die Hängebrücke am Mostelberg noch nicht genug von schwindelnden Höhen hat, findet in der Schweiz übrigens noch weitere Baumwipfelpfade.

Ein weiterer meiner Favoriten entführt euch gar auf Schweiter Boden (oder eben nicht Boden) in den Dschungel Madagaskars: Denn im Zoo Zürich hält die Masoala-Regenwaldhalle einen echten Indoor-Baumwipfelpfad bereit – ein tolles Ausflugsziel im Winter und bei „gruusigem“ Wetter. Was ihr dort an spannender Physik und Chemie entdecken könnt, habe ich übrigens in einem eigenen Beitrag beschrieben.

Der erste „offizielle“ Baumwipfelpfad der Schweiz ist übrigens kaum mehr als drei Wochen alt und liegt im Neckertal bei Mogelsberg im Kanton St. Gallen. Der ist hiermit auf meine Liste für die Expeditionskiste gesetzt!

Hängebrücken gibt es in der Schweiz hingegen eine ganze Reihe – darunter die mit über 3000 Meter ü.M. höchstgelegene Hängebrücke Europas! Eine Liste der schönsten Schweizer Hängebrücken findet ihr hier.

Nun wünsche ich euch aber ordentlich Mut zum Ausflug in die Höhe und viel Spass beim Erkunden aus der Vogelperspektive! Und wenn ihr schon eine Hängebrücke oder einen Baumwipfelpfad besucht habt: Wie ist es euch da oben ergangen? Was habt ihr erlebt und erforscht?

Experiment im Frühling: Blumen färben

Endlich macht sich der Frühling bemerkbar, und bis Ostern ist es auch nicht mehr lange hin. Die ersten Blumen zeigen sich draussen, und in den Auslagen der Pflanzenhändler reihen sich Primeln, Zwiebelblumen und andere Frühlingsblüher aneinander. Das ist die Gelegenheit für ein blumiges Experiment, das auch dem Osterfest eine besondere Note geben kann! Bringen wir Farbe in die Blumen!

Blogparade: Kinder sind Forscher!

Anne von X-mal anders hat in ihrer Blogparade dazu aufgerufen, darüber erzählen, wie unsere Kinder ihre Welt erforschen. Denn unsere Kinder sind die Forscher von morgen, die in ein paar Jahren ihre Neugier verwenden, um seltene (und weniger seltene) Krankheiten und Heilungsmöglichkeiten dafür zu erforschen. Schon heute werden immer wieder atemberaubende Möglichkeiten gefunden, mit den verschiedensten Erkrankungen fertig zu werden. Damit das auch in Zukunft so bleibt lohnt es sich allemal, unseren Kindern die Welt der Naturwissenschaften, die hinter solchen Behandlungsmöglichkeiten steht, als spannend zu präsentieren und ihre Neugier darauf zu befeuern.

Da ich Keinsteins Kiste genau dazu geschaffen habe, führt für mich kein Weg an dieser Blogparade vorbei!

Nun, ich habe wohl keine Kinder, aber ich bin auch mal eins gewesen – und ich hatte (und habe noch!) einen richtig echten Physiker-Forscher zum Papa. Da wurde natürlich immer wieder gemeinsam experimentiert.

So ist auch dieses Experiment alles andere als neu. Ich glaube mich daran zu erinnern, dass es vor rund 30 Jahren etwa so bei uns Einzug hielt:

Beim Einkauf im Gartencenter durfte ich mich an der Pflanzenauswahl für den Garten beteiligen. Blaue Hortensien hatten mir es besonders angetan.

Papa daraufhin: „Aber wir haben doch schon Hortensien im Garten…“

Klein-Kathi: „Aber die sind rosa!“ (Und meine Lieblingsfarbe war -und ist- eben blau.)

Papa: „Dann machen wir unsere eben blau – dazu müssen wir keine neuen kaufen.“

Er dachte daran, die Hortensien mit der gewünschten Farbe zu giessen, sodass die Pflanzen den Farbstoff selbst aufnehmen und in ihrem Innern verteilen sollten. Nur ist Papa eben Physiker, und kein Botaniker. Letzterer hätte vermutlich voraussagen können, dass der Plan nicht funktioniert – so wie mein Plan heute, das Ganze frühlingsgerecht mit einer weissen Primel im Topf zu wiederholen, auch nicht funktioniert hat.

Dafür zeige ich euch jetzt, wie ihr tatsächlich Blumen umfärben und dabei beobachten könnt, wie Pflanzen trinken! Denn dank den Angelones habe ich einen passenden Plan B.

Experiment: Wir färben Blumen um

Für die Hortensien vor dem Haus ist es jetzt noch etwas früh. Deshalb habe ich passend zum Frühling einen Strauss weisser Tulpen erstanden: Die gibt es zur Zeit sehr preisgünstig in jedem Gartencenter oder Supermarkt mit Blumenabteilung. Und da Blau nach wie vor zu meinen Lieblingsfarben zählt, sollen auch meine Tulpen blau werden. Und ihr könnt natürlich mitexperimentieren!

Ihr braucht dazu

  • weisse Schnittblumen (Tulpen, Rosen oder auch Gerbera sollen gut funktionieren)
  • Wasserlösliche Tinte (in eurem Lieblings-Farbton), zum Beispiel in Patronen für den Fülli
  • Ggfs. Gummi- bzw. Einmalhandschuhe
  • Eine kleine Vase oder anderes Glasgefäss
  • Ein paar Stunden, ggfs. einen Tag Zeit
Alles zum Blumen färben : weisse Tulpen, Tinte, Gewürzgläser

Die leeren Gewürzgläser geben passende Blumenvasen ab. Die Tulpen habe ich weiss gekauft – am Morgen danach waren sie rosa angehaucht. Das bescherte mir am Ende zweifarbige Blüten!

Wie ihr das Experiment durchführt

  • Kürzt die Schnittblumen auf eine zu eurer Vase passende Länge (falls sie schon passend lang sind, schneidet in jedem Fall die Stiele frisch an!), entfernt überflüssige Blätter und stellt sie in die Vase
  • Löst die Tinte in etwas Wasser auf (wer keine blauen Finger mag, sollte dabei Handschuhe tragen). Die Lösung sollte kräftig gefärbt sein, da sie sich später in der ganzen Pflanze verteilen wird.
Tinte zum Blumen färben: Taucht die Patrone kopfüber ins Wasser und erlebt ein faszinierendes Extra

Schneidet den schmalen Teil der Tintenpatronen ganz oben ab und taucht die Patrone kopfunter in euer Wasserglas. Dann könnt ihr beobachten, wie die Tinte – sie ist dichter als Wasser – von selbst hinausläuft und faszinierende Schlieren formt!

  • Füllt das farbige Wasser in die Vase mit den Blumen.

Vorher : Die Blumen zum Färben stehen in Vasen mit Tinte in Wasser

  • Wartet ein paar Stunden bzw. bis zum nächsten Tag – schaut währenddessen immer mal wieder nach den Blumen. Mit der Zeit wird die Farbe in die Blüten und Blätter übergehen!

Was passiert da?

Ihr könnt an diesem Experiment wunderbar beobachten, wie Pflanzen trinken! Anlässlich weiterer Experimente zur wunderbaren Welt der Pflanzen habe ich ausführlich erklärt, wie das von statten geht: Pflanzenstiele, Blätter und Blütenblätter sind von feinen „Rohrleitungen“ durchzogen, ähnlich unseren Blutgefässen. Durch diese Gefässe können sie Wasser von den Wurzeln bis in jeden beliebigen Pflanzenteil transportieren.

Die Adern in den Blütenblättern sind deutlich blau gefärbt

Einen Tag später : Die Wasserleitungen in den Blütenblättern sind deutlich blau gefärbt!

Und was ist der „Antrieb“ dieser Wasserversorgung?

Pflanzen sind in der Lage zu „schwitzen“: Über Poren in ihren Blattoberflächen geben sie Wasser (-dampf) an ihre Umgebung ab. Dadurch entsteht im Innern der Blätter ein Wassermangel, der neues Wasser von unten – also gegen die Schwerkraft! – durch die Leitungen nachströmen lässt. Dass die Wasserteilchen regelrecht an den Leitungswänden kleben, hilft ihnen entscheidend beim Emporklettern (Physiker nennen das den Kapillareffekt).

Normalerweise sind Wasserteilchen farblos, sodass man sie in den Pflanzen nicht sieht. Wenn aber ein Farbstoff im Wasser gelöst ist, werden die Farbstoffteilchen mit den kletternden Wasserteilchen in die Pflanzen hinauf geschwemmt und sammeln sich vornehmlich am Ende der Leitungen – also ganz oben. Erst durch Rückstau bzw. durch die Ansammlung einzelner Farbstoffteilchen, die früher hängen bleiben, werden die Gefässe auf der ganzen Länge farbig.

Warum funktioniert das nicht mit Topfpflanzen?

Bei frisch angeschnittenen Schnittblumen tauchen die offenen Leitungen in den Stängeln direkt in das farbige Wasser. Wasser- und Farbstoffteilchen können also ungehindert in die Gefässe eindringen.

Topfpflanzen haben dagegen Wurzeln, die in Erde stecken. Die Wurzeln sind Gewebe aus Zellen, die eine Oberfläche bilden, durch die Wasser und Nährstoffe geschleust werden müssen. Ob durch Poren, Kanäle oder einfach durch Zellzwischenräume – die sehr kleinen Wasserteilchen müssen sich dabei durch Engpässe kämpfen, durch welche grössere Farbstoffteilchen nicht unbedingt hindurch passen.

Dazu kommt, dass sich Wasser und Farbstoffteilchen auch in der Pflanzenerde verteilen und darin hängenbleiben. So ist, selbst wenn ein Farbstoff durch die Wurzeln in die Pflanze gelangt, eine wesentlich grössere Menge Farbstoffteilchen nötig, um eine Topfpflanze sichtbar einzufärben, als für das Färben von Schnittblumen. Ganz extrem ist das im Garten, wo der „Topf“ geradezu unendlich gross ist.

Mein Physiker-Papa dachte damals freilich nicht an Zellen und Gewebe. Nachdem ich einst selbst in der Zellbiologie geforscht habe, war ich gespannt, ob Lebensmittel- oder Tintenfarbstoffteilchen in Pflanzenwurzeln eindringen würden. Taten sie nicht – jedenfalls nicht in sichtbarem Umfang.

Woraus besteht Tinte? Eignen sich alle Tinten zum Blumen färben?

Wasserlösliche Tintenfarbstoffe gehören meist der gleichen Molekül-Familie an wie viele Lebensmittelfarbstoffe: Es handelt sich um sogenannte Triphenylmethan-Farbstoffe, wie zum Beispiel „Wasserblau“.

Wie diese Stoffe zu ihrem Namen kommen und was sie farbig macht, habe ich im Artikel über Ostereier-Farbstoffe – unter denen findet man ebenfalls Triphenylmethan-Farbstoffe – genau beschrieben.

Andere Tinten bzw. Tuschen enthalten wasserunlösliche Farbkörner, die sehr viel grösser als Moleküle sind – sogenannte Pigmente. Die Pigmentkörner setzen sich mitunter auf dem Boden eines Tintenfasses ab, sodass man es vor der Benutzung schütteln sollte. Ihrer Grösse wegen eignen sich solche Pigmente weniger zum Pflanzen färben.

Viele (vor allem wasserfeste) Schreiber enthalten zudem Tinten, die sich nur in organischen Lösungsmitteln wie Alkoholen oder Aceton lösen. Die erkennt ihr an dem typischen Geruch nach „Chemie“. Auch solche Tinten sind zum Pflanzenfärben nicht geeignet, weil die meisten organischen Lösungsmittel giftig für Zellen sind – sie bekämen den Blumen also gar nicht gut!

Entsorgung

Wasserlösliche Schreibtinten können im Restmüll entsorgt werden. Ungeöffnete Tintenpatronen oder ein angebrochenes Tintenfass verwendet aber besser noch zum Schreiben oder für weitere Experimente. Kleine Mengen Tintenlösung aus den Blumenvasen könnt ihr auch in den Abfluss geben (vorsichtig, damit keine farbigen Flecken im Spülbecken bleiben) oder für spätere Versuche abfüllen und aufheben.

Wenn die gefärbten Schnittblumen verblüht sind, könnt ihr sie ebenfalls in den Restmüll geben. Wo der Bioabfall verbrannt wird wie in der Schweiz könnt ihr die gefärbten Pflanzen auch in die Biotonne geben.

Ich wünsche euch viel Spass beim Experimentieren! Und verratet uns doch, welche Experimente ihr mit euren Kindern am liebsten macht!

Hast du das Experiment nachgemacht:

[poll id=“22″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

lecker und hübsch anzusehen: reifende Tomaten

Die Schweiz wird bislang mit einem ausnehmend goldenen Oktober verwöhnt – und nicht nur ich geniesse Sonne und Wärme, sondern auch die letzten Tomaten auf meinem Balkon. Doch was tun, wenn das Wetter umschlägt, bevor die Früchte reif sind? Genau diese Frage hat eine Leserin kürzlich gestellt – man kann Tomaten nämlich in der Wohnung nachreifen lassen.

 

Warum sollte ich grüne Tomaten nachreifen lassen?

Zum Einen liegt das nahe: Grüne Tomaten sind hart und schmecken nicht besonders. Zum Anderen sind unreife Tomaten überdies leicht giftig: Sie enthalten, wie alle Nachtschattengewächse,  Solanin. Diese Substanz kann uns einen verdorbenen Magen bescheren, oder in sehr grossen Mengen noch schlimmeres. Es gibt also genügend Gründe, Tomaten nicht unreif zu essen.

 

Was ist zum Reifen nötig?

Für den Ablauf der Reifungs-Prozesse ist eine milde Umgebungs-Temperatur unerlässlich – mindestens 18 bis 20°C sollte sie betragen. (Sonnen-)Licht ist entgegen verbreiteter Vorstellungen aber nicht notwendig.

 

Was passiert beim Reifen?

Pflanzen bilden Früchte, um andere Lebewesen zu verleiten, davon zu fressen und damit ihre Samen zu verbreiten. Das bedingt natürlich, dass die wachsenden Früchte erst dann gefressen werden, wenn die Samen in ihrem Innern reif sind. Deshalb werden während der Reifung von Früchten verschiedene Frassschutz-Massnahmen zurückgebildet und durch Lockmittel ersetzt.

  • Die grüne Farbe unreifer Tomaten rührt vom Blatt-Farbstoff Chlorophyll her, welcher auch in den Tomaten-Zellen enthalten ist. Im Zuge der Reifung wird dieses Chlorophyll jedoch abgebaut und zunehmend von gelben und roten Carotinoiden ersetzt. (All diesen Farbstoffen kannst du auch im Experiment nachspüren – indem du Blattfarbstoffe voneinander trennst oder die Photosynthese beobachtest! Damit bedient die Tomate (nicht nur) die uns Menschen eigene Programmierung, die uns „rote Früchte“ mit „lecker“ bzw. „nahrhaft“ verbinden lässt.
  • Zuvor in der Frucht eingelagerte Speicherstoffe wie Stärke werden in Zucker umgebaut: Nicht nur wir Menschen mögen süsse Sachen – und begehrte, weil leicht nutzbare Energieträger sind Zucker auch.
  • Pektine – das sind grosse Moleküle, die Pflanzen und Früchten Steifigkeit und Festigkeit verleihen, werden abgebaut. In Folge dessen werden die Früchte weich und für Mensch und Tier leicht zu beissen und zu kauen. Ausserdem beruht die Verbindung zwischen Frucht und Mutterpflanze auf Pektinen, sodass sich die Früchte nach deren Abbau leichter von „ihrer“ Pflanze lösen lassen – oder sogar abfallen.
  • Solanin, das Hungrige davon abhalten, soll, unreife Tomaten vorzeitig zu fressen und so ihre Verbreitung zu vereiteln, wird abgebaut. Die reifen Früchte sollen ja verzehrt werden – da wäre das Gift nur hinderlich.
  • Weitere Aromastoffe werden aufgebaut: „Süss“ allein macht eine begehrenswerte Frucht nicht aus – eine Vielzahl von Aromastoffen verleiht ihr einen einzigartigen Geschmack, der uns immer wieder davon naschen lässt. Unglücklicherweise ist dies auch der komplizierteste Teil des Reifeprozesses, für welchen dann doch etwas mehr als Wärme nötig ist (deswegen empfinden wir nachgereifte Tomaten aus dem Supermarkt häufig als fade).
Sehen nicht nur lecker aus - schmecken auch: In Wärme und Licht am Strauch reifende Tomaten

Sehen nicht nur lecker aus – schmecken auch: In Wärme und Licht am Strauch reifende Tomaten

 

Wie kann man Tomaten nachreifen lassen?

Einzelne Tomaten kannst du einfach in Zeitungspapier oder einen Papier-Beutel einwickeln und ein paar Tage in einem warmen Raum (20°C aufwärts) lagern. Wenn du einen Apfel dazu legst, kann die Reifung noch zügiger bzw. erfolgreicher verlaufen.

Wenn noch ganze Rispen grüner Tomaten an deiner Tomatenpflanze hängen, kannst du auch die Pflanze direkt über der Wurzel abschneiden und kopfunter an einem warmen Ort aufhängen.

 

Was bewirkt der Apfel?

Nicht nur menschliche Körper, sondern auch Pflanzen steuern ihre Funktionen mit Hormonen – also mit Botenstoffen, die von einem Gewebe in ein anderes transportiert werden können. Die Anweisung zum Reifen von Früchten wird dabei von einem Stoff aus einfachen, kleinen Molekülen vermittelt: Dem Gas Ethen (auch als Ethylen bekannt).

Das Besondere an einem gasförmigen Hormon ist: Es kann auch ausserhalb des Pflanzenkörpers weitergegeben werden – somit auch von einer Pflanze zur anderen! Äpfel sind dafür bekannt, dass sie reichlich Ethen absondern, sodass andere Früchte in ihrer Umgebung rasch reifen oder sogar überreif werden können.

Obst- und Gemüse – Fernhändler nutzen diesen Umstand sogar, indem sie ihre Ware – zum Beispiel Bananen – vor der Reife ernten und nach einem zeitaufwändigen Transport an ferne Orte geradewegs zum Verkauf nachreifen lassen. Dazu legen sie allerdings keine Äpfel daneben, sondern holen sich ihr Ethen aus der Gasdruckflasche (das Gas ist übrigens hochentzündlich, weshalb es nur in die Hände von Fachleuten und entsprechend gesicherte Anlagen gehört!).

Wie wirkt Ethen-Gas auf Pflanzen und Früchte?

Ethen sorgt dafür, dass die Zellwände von Früchten und Pflanzen durchlässig werden. So können die Zellen mehr bzw. einfacher Sauerstoff atmen, welcher verschiedene Oxidations-Prozesse „befeuert“. Solche Prozesse machen die oben beschriebenen Vorgänge zur Reifung aus – und im Übrigen auch das Welken von Pflanzen, das ebenfalls durch Ethen eingeleitet werden kann. Schnittblumen sollten also besser nicht neben der Obstschale mit Äpfeln stehen.

Einzig die Synthese von Aromastoffen lässt sich nicht auf diese einfache Weise bestreiten. Deshalb „schmeckt“ man Früchten und Gemüse die industrielle Ethen-Begasung häufig an, indem man eben nichts schmeckt.

Das dürfte auch für die Tomaten aus dem Garten gelten, die mit dem „Apfel-Trick“ nachgereift sind – je unreifer sie beim Abnehmen waren, desto mehr. Deshalb lasse ich meine letzten Tomaten so lange wie möglich am Strauch – und bislang das Hochdruckgebiet „Tanja“ ihnen wohlgesonnen und beschert ihnen noch viele warme Stunden an der Sonne.

Und wie steht es um eure letzten Tomaten?

Letzte Woche hast du hier lesen können, warum viele Stoffe farbig erscheinen und warum wir unsere Welt bunt sehen. Jetzt im Herbst präsentieren sich Farben aber noch wundersamer als sonst: Die im Sommer grünen Blätter von Bäumen und Sträuchern werden gelb, orange und rot: sie ändern ihre Farbe!

Stoffe erscheinen farbig, weil ihre Elektronen Licht mit ganz bestimmten Wellenlängen schlucken und vorübergehend auf ein anderes, erreichbares Energieniveau – eine höhere Etage im atomaren Hochhaus – wechseln können. Wenn sich die Farbe eines Gegenstands ändert, bedeutet das also, dass sich entweder der farbige Stoff darin verändert (und damit die Abstände zwischen den atomaren Hochhaus-Etagen), oder dass der Gegenstand mehrere farbige Stoffe enthält, deren Mischungsverhältnis sich ändert.

Mit dem hier beschriebenen Versuch kannst du nachweisen, dass Blätter von Pflanzen mehrere Farbstoffe enthalten. Dieser Versuch lässt sich bei Beachtung der Anleitung und Sicherheitsanweisungen in diesem Artikel und auf den Chemikalien-Behältern gefahrlos zu Hause durchführen. Kinder experimentieren nur unter der Aufsicht durch Erwachsene! Für Schäden in Folge der Durchführung, insbesondere bei Nichtbeachtung der Anweisungen, übernimmt Keinsteins Kiste keine Haftung.

Grüne Blätter enthalten Chlorophyll, einen grünen bzw. blaugrünen Stoff, der im Rahmen der Photosynthese die Energie absorbierter Lichtwellen in chemische Energie umwandelt. Diese Energie muss dann auf andere Moleküle übertragen werden. Das übernehmen andere Stoffe, die ebenfalls farbig sind: Die Carotinoide sind chemisch mit Vitamin A (beta-Carotin) verwandt und haben ähnlich diesem gelbe, orange bis rotbraune Farben. In einem frischen Blatt werden die Carotinoide jedoch vom Chlorophyll verdeckt bzw. damit vermischt, sodass die meisten Blätter im Sommer saftig grün erscheinen.

Im Herbst stellen viele Pflanzen ihren Photosynthese-Betrieb jedoch ein und machen Winterpause. Das damit überflüssige Chlorophyll in den Blättern wird dabei abgebaut, während die Carotinoide länger in den Blättern verbleiben. Ohne die Abdeckung durch bzw. die Mischung mit Chlorophyll erscheinen uns die Carotinoide nun uneingeschränkt gelb, orange und rot.


Einzelne Farbstoffe werden sichtbar, wenn man sie trennt

Um die einzelnen Farbstoffe im Farbgemisch der Blätter sehen und unterscheiden zu können, müssen wir sie voneinander trennen. Zum Trennen von Stoffen haben Chemiker viele verschiedene Strategien ersonnen, mit welchen sie die verschiedenen Eigenschaften verschiedener Stoffe nutzen. Bei Farbstoffen, die wir allein durch Ansehen unterscheiden können, genügt es diese an verschiedene Orte zu sortieren, an welchen wir sie einzeln betrachten können.

Die passende Strategie dazu wird Chromatographie genannt: Das Farbstoffgemisch wird mit einem Fliessmittel vermengt (auch bewegliche bzw. mobile Phase genannt) und durch eine Art Flussbett (auch ruhende bzw. stationäre Phase)strömen gelassen. Die Farbstoffe verhalten sich dabei wie Treibgut im Fluss: Je nach ihrer Beschaffenheit bleiben sie unterschiedlich stark an Grund und Ufern (also dem Flussbett) des Flusses haften und kommen in einer vorgegebenen Zeit unterschiedlich weit voran. Die unterschiedlichen Treibgutsorten (oder Farbstoffe) können wir dann an verschiedenen Abschnitten des Flussbetts einzeln betrachten.

Um Blattfarbstoffe zu trennen genügt ein Streifen Papier als stationäre Phase, der in einem Honigglas oder ähnlichem, das als Trennkammer dient, aufgehängt wird. Als Fliessmittel, das gemeinsam mit den Farbstoffen die mobile Phase bildet, kann ein Gemisch aus Aceton und Benzin verwendet werden.


Vorbereitung für einen Versuch: Trennung von Blattfarbstoffen mittels Papier-Chromatographie

Wichtig! Lies dir die folgende Anleitung bis zum Ende durch, bevor du mit einem Versuch beginnst! Sie enthält wichtige Hinweise zu möglicherweise gefährlichen Stoffen und zur richtigen Entsorgung von Abfällen!

Für die Papier-Chromatographie zur Trennung von Blattfarbstoffen brauchst du:

  • grüne (im Herbst auch gelbe und/oder rote) Blätter von Pflanzen (z.B. Ahorn-Blätter)
  • Zeichenblock
  • Aceton (ein Lösungsmittel, das man im Baumarkt im Malerbedarf bekommt)
  • Fleckbenzin (aus der Drogerie oder Apotheke)
  • Mörser und Stössel
    oder eine kleine, stabile Glas- oder Keramik-Schale und ein Werkzeug zum Zerstossen (wenn du mehrere Farbstoffgemische gleichzeitig trennen möchtest, empfehle ich für jedes Gemisch einen eigenen Mörser)
  • sauberen Sand (eine Messerspitze je Farbstoffgemisch)
  • ein leeres, sauberes Honig- oder Marmeladenglas mit Deckel und möglichst geradem Boden
  • Zwei Pasteur-Pipetten oder andere Dosierhilfen für kleine Flüssigkeitsmengen (z.B. Nasentropfen-Deckelpipetten aus der Drogerie)
  • Stecknadeln mit Kopf
  • Schere, Bleistift
  • Einen passenden Ort zum Experimentieren:
    Aceton und Benzin sind leicht flüchtig und sollten nicht unnötig eingeatmet werden! Arbeite deshalb im Freien oder in einem gut durchlüfteten Raum auf einer abwischbaren, lösungsmittelfesten Unterlage (kein Kunststoff!). Am Experimentierplatz und vor allem beim Experimentieren wird nicht gegessen, getrunken oder geraucht! Benzin und Aceton und ihre Dämpfe sind leicht entzündbar! Achte darauf, dass die Chemikalienflaschen wann immer möglich geschlossen sind. Da die Farbstoffe sehr lichtempfindlich sind, solltest du zudem bei gedämpftem Licht (in keinem Fall bei direkter Sonneneinstrahlung) und zügig arbeiten können.
  • Ich empfehle dir zudem eine Schutzbrille zu tragen:
    Lösungsmittel können die Augen reizen. Bei Augenkontakt mit den Flüssigkeiten wasche die Augen gründlich (10 Minuten lang!) aus und gehe danach im Zweifelsfall zum Augenarzt. Mit Schutzbrille ist es jedoch sehr unwahrscheinlich, dass Lösungsmittel-Spritzer in deine Augen gelangen.

So bereitest du den Versuch vor

Zur Vorbereitung des Versuchs (hier ist weder Eile noch Lichtschutz nötig) schneide von einem Zeichenblock-Bogen (Din A4) einen Querstreifen von 3 bis 5 cm Breite ab und führen ihn senkrecht in das offene Honigglas, bis er den Boden berührt. Markiere die Höhe des Glasrandes auf dem Streifen und falte ihn ca. 1 mm unter der Markierung. Schneide den Bereich „oberhalb des Glases“ in der Mitte senkrecht ein bis zum Falz, sodass du nun einen Halbstreifen nach vorn, den anderen nach hinten knicken kannst. Wenn du den Papierstreifen nun wieder in das Glas hängst, sodass die beiden Halbstreifen auf dem Rand aufliegen, sollte der ungeteilte Streifen senkrecht und gerade hängen und unmittelbar über dem Glasboden enden. Das ist unsere stationäre Phase.

Vorlage Chromatographie-Streifen

Muster für die Vorbereitung der stationären Phase:Der Streifen Zeichenblock-Papier ist quer dargestellt. Das rechte Ende entspricht unten und wird später in die Flüssigkeit in der Trennkammer getaucht. Fliessmittel und Farbstoffe laufen (bzw. steigen) im Versuch nach oben (entlang der Pfeilrichtung, die hier nach links dargestellt ist).

Nimm den Papierstreifen erst einmal wieder aus dem Glas. Fülle dann 8 ml (oder 8 gut gefüllte Pipetten) Fleckbenzin und 2 ml ( 2 gut gefüllte Pipetten) Aceton in das Glas. Sollte der Glasboden nicht ganz bedeckt sein, gib noch etwas mehr Benzin und Aceton im Verhältnis 4 : 1 hinzu. Schraube den Deckel auf das Glas, damit die Lösungsmitteldämpfe (du wirst sie riechen) nicht entweichen können.


Wie du die Farbstoffe aus den Blättern bekommst

Ab jetzt solltest du deinen Experimentierplatz vor direkter Sonneneinstrahlung bzw. Beleuchtung schützen und ohne längere Unterbrechung arbeiten können.

Gib eine Messerspitze Sand in einen Mörser. Zerschneide ein grünes (oder gelbes oder rotes) Ahornblatt in kleine Stücke (ich schneide das Blatt dazu alle 3 bis 5 mm längs ein und dann senkrecht dazu, sodass kleine Quadrate oder Rechtecke im Rechenkästchenformat entstehen) und gib die Schnipsel in den Mörser. Gib gerade so viel Aceton dazu, dass Flüssigkeit im Mörser sichtbar bleibt – in meinem Espressotassen-Mörser waren das eine, höchstens zwei Nasentropfen-Pipetten.

Aceton und Benzin müssen in einer Sondermüll-Sammelstelle entsorgt werden! Indem du kleinstmögliche Mengen verwendest, die im Idealfall in kurzer Zeit verdunsten, vermeidest du unnötigen Abfall und bestenfalls den Gang zur Sammelstelle!

Zermahle die Blattschnipsel mit Sand und Aceton einige Minuten lang gründlich (sollte das Aceton dabei verdunsten, gib einfach noch ein paar Tropfen hinzu), bis das Aceton sich tief grün (oder gelb oder rot) gefärbt hat. Diese Lösung sollte möglichst viel Farbstoff in möglichst wenig Aceton enthalten. Eventuell überschüssiges Aceton kannst du einfach verdunsten lassen (den Behälter vor Licht schützen!).


Wie du die Chromatographie startest

Schiebe die Blattschnipsel beiseite und kippe den Mörser mit der Farbstofflösung etwas, sodass du die Flüssigkeit über dem Sand stehen siehst. Tauche einen Stecknadelkopf in die Lösung und tupfe die Flüssigkeit unten auf deinen Papierstreifen. Der Farbtupfer muss später oberhalb des Flüssigkeitsspiegels im Glas verbleiben! Ich habe meine Tupfer daher ca. 1 cm über dem unteren Streifenrand angebracht.

Lasse den ersten Tupfer kurz antrocknen und tupfe weitere Lösung auf dieselbe Stelle. Wiederhole das Auftragen, bis der Farbtupfer deutlich sichtbar und von intensiver Farbe ist. Dann schraube das Honigglas auf und hänge den Streifen wieder hinein, sodass sein Ende in die Flüssigkeit darin taucht. Lege den Deckel umgekehrt wieder auf die Glasöffnung, um die Lösungsmitteldämpfe am Entweichen zu hindern. Bewege das Glas jetzt nach Möglichkeit nicht mehr.

Chromatographie-Streifen im Honigglas

Papier-Chromatographie im Honigglas:Links der Papierstreifen, welcher die stationäre Phase bildet, mit einer getrennten Farbspur (aufgenommen nach dem Versuch); Rechts befindet sich der Streifen in der Honigglas-Trennkammer. Der graue Rand unten zeigt, wie weit das Papier in die Flüssigkeit eintaucht. Der zweite, nach hinten gecknickte Halbstreifen der Aufhängung wird hier durch den Deckel verdeckt.


Wie du deine Versuchsergebnisse sicherst

Die Flüssigkeit wandert von unten nach oben in den darin eintauchenden Papierstreifen – anfangs sehr schnell, später zunehmend langsamer. Dabei schwemmt sie die verschiedenen Farbstoffe unterschiedlich weit mit. Lasse den Versuch ca. 15 Minuten lang, maximal so lang, bis die Flüssigkeit den Falz fast erreicht hat, laufen, bevor du den Papierstreifen aus dem Glas nimmst und damit den Fluss stoppst. Schraube das Glas anschliessend gleich wieder zu.

Sieh dir die Verteilung der Farben an, während du den Streifen kurz trocknen lässt (die Lösungsmittel verdunsten sehr schnell, sodass das Papier im Nu trocken sein sollte). Markiere die farbigen Banden mit Bleistift und beschrifte sie. Da die Farbstoffe sich am Licht nach wie vor schnell zersetzen, können die Markierungen ggfs. für spätere Versuche als Referenz dienen. Wenn du Fotos machen möchtest, dann tu das am besten gleich nach dem Versuch, so lange die Farben noch am deutlichsten sichtbar sind. Der trockene Streifen lässt sich überdies zwischen den Seiten eines Buchs oder in einer geschlossenen Schachtel lichtgeschützt aufbewahren.

Papierchromatographie von grünen Blättern

Ergebnis der Chromatographie eines Farbstoffauszugs aus einem noch grünen Ahorn-Blatt: Beide Chlorophyll-Varianten sind deutlich zu sehen. Ausserdem haben sich die besser beweglichen Carotinoide vom etwas langsameren Lutein abgesetzt.

Wenn du die Farbstoffe aus einem grünen Blatt getrennt hast, solltest du von unten nach oben folgende Banden sehen können:

  • Startpunkt: Einige Stoffe wandern nicht erkennbar bzw. gar nicht, sodass der ursprüngliche Tupfen, nun gelblich-grau, immer noch sichtbar ist
  • gelbgrün: Chlorophyll B : Diese Variante des Chlorophylls wandert in Papier am langsamsten.
  • blaugrün: Chlorophyll A : Diese Variante des Chlorophylls wandert etwas schneller als Chlorophyll B.
  • gelb: Lutein (Xanthophyll) : Dies ist ein gelboranger Carotin-Farbstoff, der z.B. auch Eigelb gelb färbt.
  • orangegelb: einige weitere Carotinoide wandern noch schneller und damit weiter als Lutein.

Farbtupfer aus gelben Blättern enthalten keine sichtbaren Chlorophylle mehr, weshalb die Banden für Chlorophyll A und B bei solchen fehlen. Rote Blätter enthalten ebenfalls noch gelbe Carotinoide. Die roten Farbstoffe lösen sich weniger gut in Aceton und bewegen sich im beschriebenen Versuch nicht sichtbar vom Startpunkt fort.

Zum besseren Vergleich können auch mehrere Farbgemische auf einem breiten Papierstreifen nebeneinander untersucht werden.

Papierchromatographie von bunten Herbst-Blättern

Papier-Chromatographie mit mehreren Proben: Rechts eine weitere Probe von dem grünen Blatt aus dem ersten Versuch, in der Mitte eine Probe des Auszugs aus einem gelben Ahorn-Blatt, links aus einem dunkelroten Ahorn-Blatt. Das grüne Blatt enthält deutlich sichtbar Chlorophyll, das gelbe und rote Blatt nicht. Die Carotinoide und das Lutein sind bis an den Falz gewandert und dort gestaut worden (stoppe den Versuch, bevor das passiert!). Die roten Farbstoffe in der linken Probe haben sich nicht vom Startpunkt wegbewegt.


Weitere Chromatographie-Versuche

Enthalten Blätter von verschiedenen Pflanzenarten die gleichen Farbstoffe? Enthalten rote bzw. gelbe Lebensmittel (z.B. Gemüse, Früchte, Paprika-Gewürz) auch Carotinoide? Wie sieht es mit gelben und roten Blütenblättern aus?

Diesen Fragen kannst du mit weiteren Versuchen gemäss dieser Beschreibung einfach nachgehen. Fallen dir vielleicht noch mehr ein?


Entsorgung von Abfällen

Schraube das Honigglas nach dem Experimentieren gut zu, um den Rest des Fliessmittels für spätere Versuche aufzuheben. Mörser mit zermahlenen Blättern lasse über Nacht draussen (auf dem Balkon oder der Terrasse) stehen, bis die Lösungsmittelreste darin verdunstet sind. Blattreste und Sand kannst du dann in den Rest-Abfall geben. Lösungsmittelreste, die nicht verdunstet sind, müssen in einer Sondermüll-Sammelstelle abgegeben werden. Fülle sie dazu in eine fest verschliessbare Flasche aus Glas oder Polyethylen (PE) bzw. Polypropylen (PP) (andere Kunststoffe werden eventuell von Aceton aufgelöst!) und lagere sie licht- und wärmegeschützt, bis du sie zur Abfall-Sammelstelle bringen kannst.

Fazit

Grüne Ahorn-Blätter enthalten zwei Varianten des Chlorophylls, den Carotin-Farbstoff Lutein und andere Carotinoide. Im Herbst werden die Chlorophylle schnell abgebaut, die Carotinoide wesentlich langsamer, sodass die Blätter sich gelb, noch später rot verfärben. Mittels Papier-Chromatographie mit Aceton/Benzin lassen sich Chlorophylle und Carotinoide mit wenig Zeitaufwand trennen.

Und die Farbstoffe welcher Pflanzenarten hast du getrennt?

Hast du das Experiment nachgemacht:

[poll id=“44″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!