Tag Archive for: Biologie

Nierenstein ganz nah

Was sind Nierensteine? Fördert kalkhaltiges Wasser ihre Entstehung?

Diese Leser-Frage kam auf, als ich vor ein paar Wochen über Kalkfänger geschrieben habe – Ringe aus Stahlwolle, die eine Art Köder für Kalk darstellen, der sich aus hartem Wasser absetzen kann. Diese Kalkablagerungen liessen eine Leserin an Nierensteine denken, jene unerwünschten Ablagerungen, die in unseren Nieren entstehen und auf schmerzhafte Weise den Harnleiter verstopfen können. 

Was sind Nierensteine und wie entstehen sie?

Die Nieren sind die Kläranlagen unseres Körpers. In ihnen werden verschiedene Stoffwechselabfälle, Ionen und Wasser aus dem Blut „gewaschen“ und zu dem gesammelt, was als Urin in die Harnblase und von dort nach draussen abfliesst. Normalerweise lösen sich alle Abfälle in Wasser, sodass der Urin als klare Flüssigkeit seinen Weg durch die Harnleiter von der Niere zur Blase antreten kann.

Die Wasserlöslichkeit einiger Abfälle bzw. von Kombinationen verschiedener Bestandteile ist jedoch sehr begrenzt. Wenn unter unglücklichen Umständen die Konzentration solcher Stoffe oder Kombinationen im entstehenden Urin zu hoch wird, wird es solchen Stoffen in der Lösung „zu eng“: Sie verlassen die Lösung und werden fest (Chemiker sagen „sie fallen aus“).

Dabei suchen sich die ausfallenden Teilchen meist irgendeinen Feststoff-Krümel als Anreiz und lagern sich von allen (zugänglichen) Seiten daran an. So entsteht Schicht für Schicht ein Sandkorn, das sich mit der Zeit zu einem kleinen Kieselsteinchen auswachsen kann – einem Nierenstein.

Nierensteine - wo sie zu finden sind

Ablagerungen schwer löslicher Salze können den Harnleiter (nach links unten aus der Niere abgehend) verstopfen und so zu Nierenkolik, Harnrückstau und gefährlichen Entzündungen führen. ( By BruceBlaus. Blausen.com staff (2014). „Medical gallery of Blausen Medical 2014“. WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436. (Own work) [CC BY 3.0], via Wikimedia Commons

Wenn solche Nierensteine in den Harnleiter geraten, können sie je nach Grösse darin stecken bleiben (dann spricht man korrekterweise von Harnleitersteinen) und somit den Abfluss für den Urin verstopfen. Die Folge sind starke, krampfartige Schmerzen (die berüchtigte Nierenkolik) und ein Rückstau des Urins, der Entzündungen mit sich bringen und die Niere schädigen kann. Wenn es einmal zu so einer Verstopfung kommt, hilft nur noch der Weg in Spital, um die Steine zerkleinern und entfernen zu lassen (heutzutage geht das meist mit Hilfe von Schallwellen von aussen).

Wer solch eine unangenehme Erfahrung aber von vorneherein vermeiden möchte, tut gut daran, über Nierensteine bescheid zu wissen. Die „unglücklichen Umstände“ lassen sich nämlich in den allermeisten Fällen recht einfach vermeiden. 

Woraus bestehen Nierensteine?

Die allermeisten Nierensteine bestehen aus Salzen, also aus Verbindungen verschieden geladener Ionen, die sich in ungünstiger Paarung schlecht in Wasser lösen. In den meisten dieser Steine (d.h. in rund 80 bis 85% aller Nierensteine), sind Calcium-Ionen, Ca2+, massgeblich an diesen Paarungen beteiligt. Richtig – das sind genau die Kationen, aus denen auch Kalk entsteht. Die Frage unserer Leserin liegt also nahe.

Anstelle von Carbonat-Anionen (CO32-) enthalten Nierensteine jedoch andere negativ geladene Ionen, allen voran das Anion der Oxalsäure (Oxalat,C2O42-, 60% aller Nierensteine). Dazu kommen Phosphat-Anionen (PO42-), 9% aller Steine) und das Anion der Harnsäure (Urat) und weitere, die allesamt mit Calcium in Wasser schwer- bis unlösliche Salze bilden.

Harnsäure kann sowohl ganz allein als ungeladenes Molekül oder als Urat-Anion mit Metall-Ionen ausfallen und Harnsäuresteine bilden (15% aller Nierensteine).

Als Folge von Harnwegs-Infektionen können überdies Magnesium (Mg2+) und Ammoniumionen (NH4+) mit Phosphat-Anionen zu „Struvit“-Steinen zusammenfinden (11% aller Nierensteine), die nach dem Mineral der selben Zusammensetzung benannt sind.

Selten sind Steine aus anderen organischen Stoffen, wie Cystin oder Xanthin, die aufgrund von genetisch bedingten Stoffwechselstörungen in zu grossen Mengen im Urin landen (je 1% aller Nierensteine).

Da es in so einer Niere höchst lebendig und bewegt zu und her geht, finden all diese Ionen und Moleküle beim Ausfallen keine Ruhe, um sich zu ordentlichen, sichtbar symmetrischen Kristallen zusammen zu lagern. So entstehen oft gerundete oder blasige, unstrukturierte Kiesel, deren Zusammensetzung aus Ionenkristallen sich erst vor dem Makro-Objektiv (wie auf dem Artikelbild) oder unter dem Elektronenmikroskop offenbart.

Nierenstein unter dem Rasterelektronenmikroskop

Oberfläche eines Calciumoxalat-Steins unter dem Rasterelektronenmikroskop. Die Breite des Bildes entspricht einer Länge von 0,45mm ! (By Kempf EK (Own work) [CC BY 3.0], via Wikimedia Commons)

Ebenso führt das lebendige Treiben rund um die Urin-Entstehung zwangsläufig dazu, dass verschiedene Ionensorten miteinander ausfallen und Mischkristalle bilden. Für einen Nierenstein eine Salzformel wie für einen Reinstoff anzugeben ist deshalb höchst schwierig bis unmöglich. 

Was erhöht die Konzentration der schwerlöslichen Salze?

So unterschiedlich wie die verschiedenen Nierensteine sind auch die Umstände, unter welchen sie entstehen. Eine Gegebenheit führt allerdings in jedem Fall zur Erhöhung der Konzentration gelöster Teilchen: Ein Mangel am Lösungsmittel.

Zu einem Überschuss an Nierenstein-Bestandteilen im Urin kommt es also für

Alle Steine

Bei Flüssigkeitsmangel – wenn zu wenig getrunken oder/und zu viel Flüssigkeit ausgeschieden wird (Schwitzen, Durchfall,…alles was zu Dehydrierung führen kann).

Calciumoxalat-Steine

Bei vermehrter Ausscheidung von Oxalat aus dem Blut in den entstehenden Urin.

An sich sind Oxalat-Anionen ganz normale Stoffwechsel-Abfallprodukte, die in jedem Körper vorkommen und transportiert werden. Dementsprechend einfach kann es zu einer „Flutung“ mit Oxalat kommen, wenn sich irgendwo eine reichhaltige Quelle auftut. Die naheliegendste solche Quelle ist die Nahrung:

Schwarztee (manchmal auch Grüntee), Spinat, Rhabarber, Rande (in Deutschland: Rote Bete), Krautstiel (in Deutschland: Mangold), Kakao und Nüsse sind Lebensmittel, die relativ viel Oxalsäure enthalten.

Auch Stoffwechselstörungen, sowohl erbliche (selten) als auch erworbene, können zur vermehrten Ausscheidung von Oxalat-Anionen führen. Ursachen für viel Oxalat im Urin können Funktionsstörungen der Nebenschilddrüsen, die Überdosierung von Vitamin D, eine zurückliegende Magen-Bypass-Operation, Morbus Cushing, die Folgen von Knochenkrebs und weitere sein.

Harnsäure-Steine

Bei vermehrter Ausscheidung von Harnsäure-Salzen (Urat) aus dem Blut.

Harnsäure bzw. Harnsäure-Anionen sind ein Stoffwechselprodukt, das beim Abbau von Purinen entsteht. Purine wiederum sind Bestandteile der Nukleinsäuren, also DNA und RNA – kurz: des Erbguts in allen Zellen. Kurzum: Wo (zerstörte) Zellen sind, sind auch Purine nicht weit. Dabei können diese Zellen sowohl aus der Nahrung als auch aus unserem eigenen Körper stammen.

Dummerweise besteht die allermeiste für uns geniessbare Nahrung aus Zellen – sowohl pflanzliche als auch tierische. Dennoch gelten Innereien, Fleisch, Fisch und vor allem die Haut von Fisch und Geflügel als besonders zell- und damit als purinreich.

Körpereigene Zellen werden z.B. durch Hungerkuren oder Krebserkrankungen und deren Bekämpfung verstärkt zum Abbau ihrer selbst und damit zur Lieferung von Purinen zur Verstoffwechselung bewegt.

Die häufigste Ursache für einen Harnsäure-Überschuss im Körper ist jedoch eine Ausscheidungsstörung in den Nieren: Wenn die (auch in normalem Umfang) im Stoffwechsel entstehende Harnsäure nicht raus kann, sammelt sie sich an. In den Nieren können so Steine entstehen, bei Ablagerung in den Gelenken kommt es zur Gicht.

Ein „saurer“, also niedriger pH-Wert im Urin führt zudem dazu, dass Natriumurat, das Salz aus Natrium (Na+) und Urat-Ionen, besonders leicht ausfällt. Übergewicht gilt das wichtige Ursache für sauren Urin. Überdies hemmt Alkohol (Ethanol) die Ausscheidung von Harnsäure über die Nieren.

Struvit-Steine

Bei basischem Urin in Folge von Infektionen.

Struvit (MgNH4PO3) fällt nur in basischer Umgebung aus. Da menschlicher Urin gewöhnlich schwach sauer ist, kommen solche Steine unter normalen Umständen nicht vor (anders z.B. bei Hauskatzen: die haben gewöhnlich basischen Urin und können daher auch bei gesunder Ausgangslage Struvit-Steine entwickeln).

Anders wird das, wenn sich der Mensch einen Harnwegsinfekt mit Bakterien einfängt, die Harnstoff zu Ammoniak (NH3)abbauen können. Letzterer ist nämlich basisch, d.h. er nimmt H+-Ionen auf (so entstehen daraus Ammonium-Ionen NH4+), was zu einer Erhöhung des pH-Werts in der Umgebung – hier im Urin – führt. So können in der Gegenwart von ammoniakproduzierenden Bakterien Struvit-Steine entstehen.

Und Calciumcarbonat?

Während Calcium in vielen Nierensteinen eine Rolle spielt, ist vom Carbonat-Anion bis hierhin keine Spur. Tatsächlich ist Calciumcarbonat, wenn überhaupt, nur selten Bestandteil von Nierensteinen. Das wird daran liegen, dass unter den Bedingungen im menschlichen Körper nicht das stark basische Carbonat (CO32-), sondern das weniger basische und leichter lösliche Hydrogencarbonat (HCO3) vorkommt. 

Welche Bestandteile können über die Ernährung beeinflusst werden?

Mit der Nahrung nehmen wir vor allem drei wichtige Bestandteile von Nierensteinen auf:

  • Calcium : findet man als Ca2+-Ionen unter anderem in Milch und Milchprodukten, sowie Mineral- und Leitungswasser. Ca2+ ist nicht nur Bestandteil von Nierensteinen, sondern auch ein für den Körper unverzichtbarer Mineralstoff. Besonders für den Knochenbau und -erhalt benötigen wir unbedingt Calcium. Deshalb wird ein Verzicht auf Calcium zur Vorbeugung von Nierensteinen gar nicht mehr empfohlen (es sei denn, es findet sich tatsächlich zu viel davon im Urin). Die für gesunde Erwachsene empfohlene Calcium-Zufuhr von 1000 – 1200 mg pro Tag führt birgt gemäss der Schweizerischen Gesellschaft für Ernährung auch das geringste Risiko für die Entstehung von Calciumsteinen. Wie das kommt? Calcium allein macht noch keinen Nierenstein. Dazu braucht es schliesslich auch Anionen:
  • Oxalat : Viele Pflanzen – auch und gerade solche, die als gesund gelten – enthalten relativ viel Oxalsäure bzw. Oxalat-Anionen. So kann die Aufnahme von oxalsäurereicher Nahrung direkt zu einer Flutung der Nieren mit Oxalat führen. Wenn dann auch Calcium vorhanden ist, entstehen leicht Oxalat-Steine.
  • Harnsäure : Purine aus Proteinen in Fleisch und Fisch werden zu Harnsäure verstoffwechselt, sodass auch hier eine Aufnahme mit der Nahrung schnell zu einer Flutung führen kann. Ausserdem führt die fleischhaltige Nahrung zu einem niedrigen, d.h. sauren pH-Wert im Urin, was die Entstehung von Harnsäuresteinen weiter begünstigt.

Wie senke ich mein Nierensteinrisiko durch Ernährung?

Alle Steine

Viel trinken ist grundsätzlich Empfehlung Nummer 1, wenn es um Nierensteine geht. Schliesslich müssen sich in einem grossen Urin-Volumen wesentlich mehr Nierenstein-Bestandteile ansammeln, bevor etwas fest wird, als in einem kleineren Volumen. Patienten, die bereits mit Nierensteinen zu tun hatten oder haben, wird daher empfohlen, am Tag mindestens 2,5 bis 3 Liter zu trinken.

Calcium-Steine

In der Gegenwart von Natrium(Na+-)Ionen werden Calcium-Ionen besonders leicht vom Blut in den Urin befördert. Deshalb lässt sich die Calciumausscheidung allein durch Masshalten bei der Verwendung und damit der Aufnahme von Koch- oder Speisesalz (Natriumchlorid) verringern, ohne dass der Körper auf wertvolles Calcium verzichten müsste. Zu wenig Salz ist allerdings auch nicht angebracht, da mit dem Salz auch das Wasser seinen Weg in den Urin findet – und wenig Wasser führt zu einem niedrigen Urin-Volumen…und damit zu Nierensteinen. Empfohlen wird die Aufnahme von 4 bis 6 Gramm Kochsalz pro Tag (Achtung bei Fertigprodukten! Die enthalten oft mehr Kochsalz, als man meinen möchte!).
Zudem lässt sich Calcium hinsichtlich der Entstehung von Nierensteinen auch mit Hilfe von Zitronensäure „unschädlich“ machen: Citrat-Anionen bilden nämlich mit Ca2+ eine sogenannte Komplexverbindung, die gut wasserlöslich ist, aber das Calcium-Ion für die Reaktion zu Calciumoxalat und anderen schwer löslichen Salzen unzugänglich macht. Zitrusfrüchte und -säfte sind daher eine gute und schmackhafte Wahl (nicht nur) für die Flüssigkeitszufuhr.

Oxalat-Steine

Wer zu Oxalat-Steinen neigt, sollte eine Oxalsäure-Überflutung möglichst vermeiden. Das heisst Zurückhaltung bei oxalsäurereichen Nahrungsmitteln, zu welchen verschiedene Gemüse, Nüsse, aber auch Schokolade (Kakao!) zählen. Da Nierensteine zudem oft Gemische aus verschiedenen Stein-Typen sind, ist deshalb eine rein vegetarische Ernährung zur Vermeidung von Harnsäuresteinen nicht zu empfehlen: Zu schnell gerät man dabei an Oxalsäure, die dann vom Regen in die Traufe führen kann.
Es gibt jedoch einen Trick für all jene, die auf ihr oxalatreiches Lieblings-Gemüse nicht verzichten wollen: Verspeist die Oxalsäure gemeinsam mit Calcium, zum Beispiel aus Milchprodukten oder Mineralwasser! Dann bildet sich das schwerlösliche Calciumoxalat nämlich schon im Verdauungstrakt – und wird mit dem Stuhlgang gleich wieder ausgeschieden. Damit ist das Calcium allerdings auch verloren und trägt nicht nur Deckung des Tagesbedarfs bei!

Harnsäuresteine

Wer mit Harnsäure-Steinen zu tun hat, sollte Fleisch und Fisch in Massen essen (maximal 1 Portion von 120g pro Tag an höchstens 5 Tagen in der Woche) und besonders purinhaltige Bestandteile meiden. Eine rein vegetarische oder gar vegane Ernährung ist jedoch der Oxalsäure wegen sehr schwierig und wird daher nicht empfohlen. Wer Übergewicht abbauen möchte, sollte das Abnehmen langsam angehen, um eine Flutung mit körpereigenen Purinen zu vermeiden! Hydrogencarbonat-Ionen – zum Beispiel aus Mineral- oder auch Leitungswasser – können dabei helfen, den sauren Urin-pH zu erhöhen (d.h. „basischer zu machen“).

Struvit-Steine

Harnwegsinfekte sollten frühzeitig behandelt werden, um Struvit-Steine und eine Nierenbeckenentzündung zu vermeiden! Meine persönliche Waffe für den „Präventiv-Schlag“ bei einer Harnwegs-Reizung sind Preiselbeer- bzw. Cranberry-Getränke (zum Beispiel aus Trink-Granulat). Damit kann ich vieles schon im Keim ersticken. Bei anhaltenden Schmerzen oder/und Fieber aber unbedingt zum Arzt gehen und eine Urin-Probe untersuchen lassen! Das dauert nur ein paar Minuten und zeigt, ob ihr einen Infekt mit Bakterien habt, der mit Antibiotika behandelt werden sollte! 

Fazit

Die Entstehung von Nierensteinen kann verschiedene Ursachen haben. Dabei können die Rahmenbedingungen für die Stein-Entstehung teilweise durch die Ernährung beeinflusst werden.

Calcium, genauer das Ca2+-Ion, welches massgeblicher Bestandteil an Kalkablagerungen in Bad und Küche ist, ist auch in den meisten Nierensteinen enthalten. Für die Vermeidung von Nierensteinen sind jedoch die Anionen, die mit dem Calcium schwer lösliche Verbindungen bilden, viel bedeutsamer. Die Aufnahme solcher Anionen, wie Oxalat und Urat, und damit ihre Konzentration im entstehenden Urin in den Nieren lässt sich über die Ernährung recht gut steuern. Dabei sind Calcium und das in „hartem“ Wasser gelöste Hydrogencarbonat-Anion mitunter sogar nützliche Hilfsmittel!

Viel trinken und eine massvolle, aber vielseitige Ernährung helfen grundsätzlich dabei, einen ausgeglichenen Stoff-Haushalt (nicht nur) in den Nieren zu bewahren und der Entstehung von Nierensteinen vorzubeugen.

Mehr Infos rund um Nierensteine und Ernährung

Die folgenden Quellen sind in diesen Artikel eingeflossen:

Merkblatt „Ernährung und Nierensteine“ von der Schweizerischen Gesellschaft für Ernährung

Infoseite rund um Harn- und Nierensteine, mit Tabellen zu Stein- und Nahrungsmittel-Zusammensetzung

 

lecker und hübsch anzusehen: reifende Tomaten

Die Schweiz wird bislang mit einem ausnehmend goldenen Oktober verwöhnt – und nicht nur ich geniesse Sonne und Wärme, sondern auch die letzten Tomaten auf meinem Balkon. Doch was tun, wenn das Wetter umschlägt, bevor die Früchte reif sind? Genau diese Frage hat eine Leserin kürzlich gestellt – man kann Tomaten nämlich in der Wohnung nachreifen lassen.

 

Warum sollte ich grüne Tomaten nachreifen lassen?

Zum Einen liegt das nahe: Grüne Tomaten sind hart und schmecken nicht besonders. Zum Anderen sind unreife Tomaten überdies leicht giftig: Sie enthalten, wie alle Nachtschattengewächse,  Solanin. Diese Substanz kann uns einen verdorbenen Magen bescheren, oder in sehr grossen Mengen noch schlimmeres. Es gibt also genügend Gründe, Tomaten nicht unreif zu essen.

 

Was ist zum Reifen nötig?

Für den Ablauf der Reifungs-Prozesse ist eine milde Umgebungs-Temperatur unerlässlich – mindestens 18 bis 20°C sollte sie betragen. (Sonnen-)Licht ist entgegen verbreiteter Vorstellungen aber nicht notwendig.

 

Was passiert beim Reifen?

Pflanzen bilden Früchte, um andere Lebewesen zu verleiten, davon zu fressen und damit ihre Samen zu verbreiten. Das bedingt natürlich, dass die wachsenden Früchte erst dann gefressen werden, wenn die Samen in ihrem Innern reif sind. Deshalb werden während der Reifung von Früchten verschiedene Frassschutz-Massnahmen zurückgebildet und durch Lockmittel ersetzt.

  • Die grüne Farbe unreifer Tomaten rührt vom Blatt-Farbstoff Chlorophyll her, welcher auch in den Tomaten-Zellen enthalten ist. Im Zuge der Reifung wird dieses Chlorophyll jedoch abgebaut und zunehmend von gelben und roten Carotinoiden ersetzt. (All diesen Farbstoffen kannst du auch im Experiment nachspüren – indem du Blattfarbstoffe voneinander trennst oder die Photosynthese beobachtest! Damit bedient die Tomate (nicht nur) die uns Menschen eigene Programmierung, die uns „rote Früchte“ mit „lecker“ bzw. „nahrhaft“ verbinden lässt.
  • Zuvor in der Frucht eingelagerte Speicherstoffe wie Stärke werden in Zucker umgebaut: Nicht nur wir Menschen mögen süsse Sachen – und begehrte, weil leicht nutzbare Energieträger sind Zucker auch.
  • Pektine – das sind grosse Moleküle, die Pflanzen und Früchten Steifigkeit und Festigkeit verleihen, werden abgebaut. In Folge dessen werden die Früchte weich und für Mensch und Tier leicht zu beissen und zu kauen. Ausserdem beruht die Verbindung zwischen Frucht und Mutterpflanze auf Pektinen, sodass sich die Früchte nach deren Abbau leichter von „ihrer“ Pflanze lösen lassen – oder sogar abfallen.
  • Solanin, das Hungrige davon abhalten, soll, unreife Tomaten vorzeitig zu fressen und so ihre Verbreitung zu vereiteln, wird abgebaut. Die reifen Früchte sollen ja verzehrt werden – da wäre das Gift nur hinderlich.
  • Weitere Aromastoffe werden aufgebaut: „Süss“ allein macht eine begehrenswerte Frucht nicht aus – eine Vielzahl von Aromastoffen verleiht ihr einen einzigartigen Geschmack, der uns immer wieder davon naschen lässt. Unglücklicherweise ist dies auch der komplizierteste Teil des Reifeprozesses, für welchen dann doch etwas mehr als Wärme nötig ist (deswegen empfinden wir nachgereifte Tomaten aus dem Supermarkt häufig als fade).
Sehen nicht nur lecker aus - schmecken auch: In Wärme und Licht am Strauch reifende Tomaten

Sehen nicht nur lecker aus – schmecken auch: In Wärme und Licht am Strauch reifende Tomaten

 

Wie kann man Tomaten nachreifen lassen?

Einzelne Tomaten kannst du einfach in Zeitungspapier oder einen Papier-Beutel einwickeln und ein paar Tage in einem warmen Raum (20°C aufwärts) lagern. Wenn du einen Apfel dazu legst, kann die Reifung noch zügiger bzw. erfolgreicher verlaufen.

Wenn noch ganze Rispen grüner Tomaten an deiner Tomatenpflanze hängen, kannst du auch die Pflanze direkt über der Wurzel abschneiden und kopfunter an einem warmen Ort aufhängen.

 

Was bewirkt der Apfel?

Nicht nur menschliche Körper, sondern auch Pflanzen steuern ihre Funktionen mit Hormonen – also mit Botenstoffen, die von einem Gewebe in ein anderes transportiert werden können. Die Anweisung zum Reifen von Früchten wird dabei von einem Stoff aus einfachen, kleinen Molekülen vermittelt: Dem Gas Ethen (auch als Ethylen bekannt).

Das Besondere an einem gasförmigen Hormon ist: Es kann auch ausserhalb des Pflanzenkörpers weitergegeben werden – somit auch von einer Pflanze zur anderen! Äpfel sind dafür bekannt, dass sie reichlich Ethen absondern, sodass andere Früchte in ihrer Umgebung rasch reifen oder sogar überreif werden können.

Obst- und Gemüse – Fernhändler nutzen diesen Umstand sogar, indem sie ihre Ware – zum Beispiel Bananen – vor der Reife ernten und nach einem zeitaufwändigen Transport an ferne Orte geradewegs zum Verkauf nachreifen lassen. Dazu legen sie allerdings keine Äpfel daneben, sondern holen sich ihr Ethen aus der Gasdruckflasche (das Gas ist übrigens hochentzündlich, weshalb es nur in die Hände von Fachleuten und entsprechend gesicherte Anlagen gehört!).

Wie wirkt Ethen-Gas auf Pflanzen und Früchte?

Ethen sorgt dafür, dass die Zellwände von Früchten und Pflanzen durchlässig werden. So können die Zellen mehr bzw. einfacher Sauerstoff atmen, welcher verschiedene Oxidations-Prozesse „befeuert“. Solche Prozesse machen die oben beschriebenen Vorgänge zur Reifung aus – und im Übrigen auch das Welken von Pflanzen, das ebenfalls durch Ethen eingeleitet werden kann. Schnittblumen sollten also besser nicht neben der Obstschale mit Äpfeln stehen.

Einzig die Synthese von Aromastoffen lässt sich nicht auf diese einfache Weise bestreiten. Deshalb „schmeckt“ man Früchten und Gemüse die industrielle Ethen-Begasung häufig an, indem man eben nichts schmeckt.

Das dürfte auch für die Tomaten aus dem Garten gelten, die mit dem „Apfel-Trick“ nachgereift sind – je unreifer sie beim Abnehmen waren, desto mehr. Deshalb lasse ich meine letzten Tomaten so lange wie möglich am Strauch – und bislang das Hochdruckgebiet „Tanja“ ihnen wohlgesonnen und beschert ihnen noch viele warme Stunden an der Sonne.

Und wie steht es um eure letzten Tomaten?

Blogbild Photosynthese

Habt ihr euch auch schon einmal gefragt, wovon Pflanzen eigentlich leben? Mit dieser Frage habe ich den ersten Teil der Experimente um das geheimnisvolle Leben der Pflanzen begonnen. Darin habt ihr erfahren, dass Pflanzen fast ausschliesslich von Luft und Wasser leben, und wie sie diese „Zutaten“ zum Leben aufnehmen und Abfälle wieder ausscheiden können.

Kein Leben ohne Energie

Doch was ist das eigentlich, das Leben? Nach Ansicht der Biologen sind Lebewesen Ansammlungen von Stoffen, die – mit Hilfe von chemischen Reaktionen – sich selbst vermehren können. Lebewesen nehmen also einfache Moleküle aus ihrer Umgebung auf und bauen sie zu grossen, komplexen Molekülen, Zellen und Geweben um. Für Pflanzen heisst das: Sie nehmen Wasser und Kohlendioxid aus ihrer Umgebung und bauen aus den Atomen dieser Moleküle Zucker, Proteine und vieles mehr, die sie zu Blättern, Stängeln und Blüten zusammenfügen. Mit anderen Worten: Pflanzen bringen Ordnung in das vormals fein verteilte Durcheinander der Kleinmoleküle.

Leben ist Ordnung
Leben ist Ordnung: Ein ungeordneter Haufen Atome (in kleinen Molekülen) – entsprechend dem Haufen Bausteine links – kann zu einem Lebewesen geordnet werden – wie die Bausteine zum Gesicht rechts.

Die Gesetze der Thermodynamik schreiben der Natur jedoch vor: Ordnung machen erfordert Arbeit – bzw. Energie. Das gilt für das Zimmeraufräumen ebenso wie für das Wachstum von Pflanzen und anderen Lebewesen.

Was leben will, braucht also (mindestens) eine verlässliche Energiequelle, um all seine chemischen Prozesse am Laufen zu halten.

Wir Menschen erledigen das beim Essen: In unserer Nahrung sind Moleküle – vornehmlich Zuckermoleküle – enthalten, in welchen Energie gespeichert ist. Diese „chemische“ Energie kann freigesetzt werden, wenn solche Moleküle mit passenden Partnern reagieren und dabei weniger energiereiche Produkte entstehen.

Grüne Pflanzen halten es anders: Sie bauen ihre Zuckermoleküle selbst! Und die Energie, welche sie in diese Moleküle einbauen, liefert ihnen das Sonnenlicht. Ganz verlässlich jeden Tag aufs Neue. Den Prozess, in welchem aus Kohlendioxid und Wasser mit Hilfe von Sonnenenergie Zuckermoleküle entstehen, nennen Biologen und Biochemiker „Photosynthese“.

Photosynthese: Wie aus Luft und Wasser Zucker wird

‚Die Photosynthese‘ fasst eine ganze Reihe von Reaktionen und Prozessen zusammen, für die wiederum eine ganze Reihe von Proteinen gebraucht wird – und natürlich Licht. Das Ganze lässt sich in einer einfachen Reaktionsgleichung zusammenfassen, welche die Ausgangsstoffe und das (vorläufige) Endprodukt der Photosynthese enthält:

Wer nachzählt, wird feststellen, dass links und rechts des Pfeils von jeder Sorte gleich viele Atome stehen, wie es sich für eine ordentliche Reaktionsgleichung gehört. 6 Moleküle Kohlendioxid (CO2) und 6 Wasser-Moleküle (H2O) werden also zu einem Traubenzucker- (bzw. Glucose-) Molekül (C6H12O6) und 6 Sauerstoff-Molekülen (O2) umgebaut.

Um Traubenzucker-Moleküle zu machen ist Energie erforderlich, die in diesen Molekülen gespeichert wird und später wieder freigesetzt werden kann. Lebewesen, d.h. Tiere, Menschen und auch Pflanzen können Glucose zu diesem Zweck im Zuge der Zellatmung kontrolliert „verbrennen“ (dazu benötigen wir den Sauerstoff, den wir atmen). Dass Zucker sich mit einem kleinen Trick auch ganz einfach anzünden und zur Energiefreisetzung abbrennen lässt, könnt ihr mit der „mysteriösen Pharao-Schlange“ selbst ausprobieren.

Licht wird zu chemischer Energie

Bevor es an die Zellatmung geht, muss der Energieträger Glucose jedoch erst einmal hergestellt werden – mit Lichtenergie. Und Licht lässt sich mit farbigen Molekülen sammeln: Im Artikel zu Farben, Licht und Glanz erkläre ich ausführlich, wie passende Lichtportionen (man nennt sie Photonen oder Lichtquanten) Elektronen auf eine höhere Etage innerhalb der Elektronenhülle eines Moleküls „anregen“ können. Je nachdem wie ein solches Molekül gebaut ist, können derart „angeregte“ Elektronen von der höheren Etage aus sehr einfach „ihr“ Molekül verlassen, um in die Elektronenhülle eines anderen Moleküls in der Nähe „einzuziehen“.

Ein Molekül mit dieser Fähigkeit zur Abgabe von Elektronen ist Chlorophyll, das vornehmlich blaues und rotes Licht zur Elektronenbeförderung verwendet (grünes und gelbes Licht lässt es unbehelligt, weshalb es uns grün erscheint). In den grünen Teilen von Pflanzen sitzen Chlorophyll-Moleküle dicht an dicht in Proteine eingebettet, wie Rosinen in einem sehr rosinenreichen Kuchen. Das Ganze hat die Form eines molekularen Hohlspiegels: So können angeregte Chlorophyll-Moleküle ihre Nachbarn anregen und ihre gesammelte Lichtenergie an das „Chef“-Chlorophyll im Brennpunkt des „Spiegels“ weiterleiten. Einmal angeregt kann dieses Molekül sehr einfach ein Elektron an ein benachbartes Protein abgeben, welches es wiederum an seinen Nachbarn weiterreicht und so fort, bis das Elektron schliesslich auf ein kleineres, bewegliches Elektronen-Transportmolekül (NADPH) verladen und zur Zucker-Herstellung „verschifft“ wird.

Dem ursprünglichen „Chef“-Chlorophyll – jetzt ein elektrisch positiv geladenes „Radikal“ – missfällt das nun fehlende Elektron jedoch so sehr, dass es sich schleunigst ein neues sucht. Behilflich ist ihm dabei ein weiteres Nachbar-Protein – ein Enzym, das Wassermoleküle auseinanderbauen kann:

Die vier Elektronen, die bei dieser Reaktion entstehen, werden zum Wiederauffüllen der Elektronenhülle von Chlorophyll verwendet. Die Wasserstoff-Ionen (H+) dienen als „Treibstoff“ für molekulare Dynamos (Proteine names ATP-Synthase), die das Energieträger-Molekül ATP „generieren“. Einzig die Sauerstoff-Atome haben keinen direkten Nutzen. So werden je zwei davon zu einem Sauerstoff-Molekül (O2) verbunden und kurzerhand durch die Spaltöffnungen in den Pflanzenblättern entsorgt.

In dieser „Lichtreaktion“ werden also Lichtquanten gesammelt, um mit ihrer Energie Wassermoleküle zu zerlegen und den Elektronentransporter NADPH sowie den Energietransporter ATP zu beladen. Dabei bleiben Sauerstoff-Moleküle als Abfall übrig, der entsorgt werden muss.

Und dass letzteres wirklich funktioniert, könnt ihr selbst nachweisen:

Versuch 1 : Sauerstoff durch Photosynthese

Sauerstoff ist Ausgangsstoff für jede Art von Verbrennung, zum Beispiel der von Kerzenwachs. Ohne Sauerstoff kann keine Verbrennung stattfinden. In einem abgeschlossenen Raum verbraucht eine brennende Kerze daher sämtlichen Sauerstoff und verlischt dann. Eine brennende Kerzenflamme zeigt also an, dass Sauerstoff in ihrer Umgebung vorhanden ist. Und das könnt ihr euch zu Nutze machen. Dazu braucht ihr:

  • Ein dicht verschliessbares Einmachglas, am besten mit Scharnier-Deckel
  • Eine Kerze, ggfs. mit Untersatz
  • Streichhölzer
  • Frische grüne Pflanzenteile bzw. -blätter
  • Sonnen- oder elektrisches Licht
  • Eine Zange, Wäscheklammer oder ähnliches

Durchführung Teil 1:

  • Zündet die Kerze an und platziert sie wie auf dem Bild im liegenden Einmachglas (Bei der Verbrennung entsteht Kohlenstoffdioxid (CO2), das schwerer als Luft ist und daher nach unten sinkt. Daher sollte die Flamme oben im Glas brennen, damit sie nicht vorzeitig erstickt).
Position der Kerze im Glas – Hier nach dem Verlöschen mit Blättern. So kann der Aufbau einige Stunden von der Sonne beschienen werden.
  • Verschliesst das Glas dicht und wartet, bis die Flamme erloschen ist. Nun ist im Glas kein Sauerstoff mehr vorhanden, sondern ein Gemisch aus Stickstoff (der Hauptbestandteil von Luft) und Kohlenstoffdioxid.
  • Sobald das Kerzenwachs erstarrt ist, stellt das Einmachglas aufrecht und öffnet es vorsichtig (da Kohlenstoffdioxid schwerer als Luft ist, dringt es nicht hinaus, und so lange es keine Verwirbelungen gibt, kommt so kein Sauerstoff hinein).
  • Entzündet ein Streichholz und lasst es mit der Zange/Klammer vorsichtig in das Glas hinab.

Das Streichholz wird verlöschen: Es ist wirklich kein Sauerstoff im Glas!

Durchführung Teil 2:

  • Platziert nun die Pflanzenteile hinten bzw. unten im Glas und platziert die brennende Kerze davor. Ich lasse dabei ein paar Tropfen Wasser im Glas (z.B. an nassen Pflanzenteilen), damit die Blätter nicht übermässig Wasser ausschwitzen.
  • Schliesst das Glas und wartet, bis der Sauerstoff darin verbraucht ist und die Flamme verlischt.
  • Stellt das Glas ungeöffnet für einige Stunden an die Sonne bzw. unter eine helle Lampe.
  • Anschliessend stellt das Einmachglas aufrecht und senkt wie oben beschrieben ein brennendes Streichholz hinein.
Nachweis Sauerstoff
Das Streichholz brennt im Einmachglas: Hier ist Sauerstoff vorhanden!

Das Streichholz wird vollständig abbrennen: Da von aussen kein Sauerstoff ins Glas kommt, muss im Glas Sauerstoff entstanden bzw. freigesetzt worden sein!


Auch im Dunkeln wird gearbeitet: Von der Photosynthese zur Kartoffel

Die „Last“ der im Zuge der Lichtreaktion beladenen Elektronen- bzw. Energietransporter wird an ihrem Bestimmungsort innerhalb der Blätter verwendet, um die Kohlenstoff-Atome aus CO2-Molekülen zu Zucker-Molekülen zu verknüpfen. Wie in der Summengleichung für die Fotosynthese angegeben bilden 6 Kohlenstoffatome (samt Sauerstoff und Wasserstoff) dabei ein Molekül Glucose (C6H12O6). Damit diese noch recht kleinen Moleküle in „ihrer“ Zelle keine Unordnung schaffen, werden sie dort miteinander zu langen Ketten verknüpft: Zu Stärke-Molekülen.

Strukturformel Stärke bzw. Amylose
Einfaches Stärkemolekül („Amylose“) – eine Kette aus Glucose-Molekülen, hier als Sechsringe dargestellt.

Aus diesem Zwischenlager kann die Glucose jederzeit – also auch im Dunkeln – wieder freigesetzt werden, zum Beispiel für die Zellatmung oder zum Umbau in andere Verbindungen. Dazu zählt zum Beispiel der „Fruchtzucker“ Fructose. Und ein Molekül Fructose lässt sich mit einem Molekül Glucose zu einem Paar verbinden – besser gesagt zu einem Molekül Saccharose, die wir alle als Haushaltszucker kennen. Die Saccharose kann nun durch das Leitungssystem einer Pflanze aus den Blättern zu anderen Orten transportiert, dort wieder in Stärke umgewandelt und eingelagert werden.

So können Pflanzen auch ihre Teile versorgen, die ständig im Dunkeln liegen, wie ihre Wurzeln. Manche Pflanzen können auf diese Weise enormen Mengen an Stärke in entsprechend voluminösen Wurzeln einlagern. Und da auch der menschliche Körper Stärke abbauen und verwerten kann, landen diese Wurzeln – zum Beispiel Kartoffeln – häufig auf unserem Teller.

Da der Abtransport der Zucker aus den Blättern auch im Dunkeln möglich ist, wird tagsüber ein Teil der mittels Photosynthese hergestellten Zucker in die Stärke-Zwischenspeicher in den Pflanzen-Blättern gefüllt, während ein anderer Teil in die Wurzeln abtransportiert wird. Nachts – ohne Licht – kommt die Photosynthese zum Erliegen, sodass nur noch Zucker abtransportiert werden und die Zwischenspeicher sich leeren.

Und den Füllstand dieser Zwischenspeicher könnt ihr sichtbar machen:

Versuch 2 : Sichtbare Stärke in Pflanzen-Blättern

Stärke wird deutlich sichtbar, wenn man sie mit (elementarem) Iod in Berührung bringt: In Wasser verdrillen sich die langen Stärkeketten zu Spiralen, ähnlich einem gekräuselten Geschenkband. In diese Kräusel passen Iod-Atome wunderbar hinein, sodass aus (in Lösung braunem) Iod und farbloser Stärke mit Iod gefüllte Spiralen entstehen, die sehr dunkelviolett oder sogar schwarz aussehen. Wenn sich Pflanzenteile in Iodlösung dunkel färben, enthalten sie also Stärke, was ihr als Nachweis nutzen könnt. Dazu braucht ihr:

  • Eine lebende Blattpflanze
  • einen schwarzen ( = lichtundurchlässigen ) Plastiksack (z.B. ein Abfallsack)
  • Schnur zum Zubinden des Sacks
  • Iod-Lösung:
    • entweder Iod-Kaliumiodid-Lösung („KI3„): 3g Iod und 10g Kaliumiodid auf 1l Wasser, oder auch fertig zu kaufen, z.B. als Testlösung für den Erntezeitpunkt von Obst oder in der Apotheke/Drogerie (da die dunkle Färbung mit dieser Variante deutlicher ausfällt als mit der zweiten, lohnt sich der Einkauf für das „Testen“ von Blättern)
    • oder Betaisodona-Lösung bzw. -salbe (Polyvidon-Iod, eine andere, wasserlösliche Einschluss-Verbindung mit Iod) aus der Apotheke): Aus der Salbe könnt ihr eine Lösung herstellen, indem ihr 2 bis 3 cm davon aus der Tube in ein Glasgefäss drückt und wenige Milliliter Wasser dazu gebt. Die Salbe löst sich in wenigen Minuten vollständig darin auf (ggfs. könnt ihr ein wenig umrühren), sodass eine kräftig braune Flüssigkeit übrig bleibt.
  • Sonnen- oder elektrisches Licht
  • eine Herdplatte oder vergleichbare Wärmequelle
  • evtl. Brennsprit/Spiritus, ein zusätzliches Glasgefäss und eine Grillzange oder ähnliches
  • eine Pinzette
  • Eine kleine Schale aus Glas (kein Kunststoff – der könnte vom Iod ebenfalls dunkel verfärbt werden!)

Durchführung:

  • Stülpt den Plastiksack über einen Zweig eurer Pflanze mit Blättern (nicht über die ganze Pflanze – einige Blätter sollen am Licht bleiben!).
Plastiksack über einem Zweig unseres chinesischen Ahorns (der mehr als genug Blätter zum Experimentieren hat).
  • Lasst die Pflanze mindestens 3 Tage lang am Licht (ggfs. giessen nicht vergessen!).
  • Pflückt ein Blatt von eurer Pflanze. Dann entfernt den Plastiksack und pflückt ein weiteres Blatt, welches zuvor im Sack gewesen ist.
  • Wenn ihr mit Kaliumtriiodid-Lösung arbeitet: Legt jedes Blatt einzeln in einen Kochtopf mit Wasser und lasst es auf dem Herd mindestens 15 Minuten kochen. Dabei werden die Blatt-Zellen so weit zerstört, dass Iod-Lösung einfach hineindringen kann.
  • Wenn ihr mit Betaisodona arbeitet: Legt jedes Blatt einzeln für wenige Minuten in kochendes Wasser (bis das Wasser sich grünlich zu färben beginnt). Dann fischt das jeweilige Blatt mit einer Pinzettte aus dem Wasser und legt es in ein Gefäss mit etwas Ethanol („Alkohol“: Brennsprit bzw. Spiritus). Erhitzt den Alkohol vorsichtig, indem ihr das Gefäss in das leicht kochende Wasser in eurem Kochtopf taucht.
Extraktion von Chlorophyll
Extraktion von Chlorophyll im Wasserbad: Im Becherglas sind Alkohol und das Blatt, im Topf ist Wasser. Die lange Grillzange erlaubt es mir, auf Abstand zu den Dämpfen zu bleiben.

Der Alkohol löst das verbliebene grüne Chlorophyll aus den beschädigten Blattzellen, sodass das Blatt ausgebleicht zurückbleibt. So ist die dunkle Farbe der Iodstärke später besser zu sehen.

Brennsprit bzw. Spiritus ist leicht entzündlich! Verwendet kein offenes Feuer zum Erhitzen, sondern einen Elektroherd! Alkohol-Dampf kann überdies benommen machen! Nicht einatmen! Haltet Abstand zum Topf und schaltet – wenn vorhanden – die Dunstabzugshaube ein! Verwendet überdies so wenig Alkohol wie möglich.

  • Legt die Blätter auf eine flache Glas- oder Porzellanschale. Verteilt Iodlösung auf den Blättern und lasst sie wenige Minuten einziehen.

Das Blatt, welches der Sonne ausgesetzt war, wird sich dunkel färben: Hier ist durch Fotosynthese Stärke entstanden und eingelagert worden. In den Blättern unter dem Plastiksack konnte keine Stärke entstehen. Aus diesen Blättern wurde die Stärke also nur abtransportiert, sodass keine/kaum Stärke übrig ist, die sich dunkel färben könnte!

Reaktion von Iod mit Stärke im Blatt
Links: Ein belichtetes Blatt vom chinesischen Ahorn nach dem Erhitzen in Ethanol: Der Bereich um die grosse mittlere Blattader ist weitgehend gleichmässig hell. Rechts: Nach dem Beträufeln mit Polyvidon-Iod zeigen sich dunkle Strukturen – hier hat sich das Iod in Stärkemoleküle eingelagert!

Entsorgung von Iod-Lösungen

Iod ist sehr giftig für Wasserorganismen, weshalb es als Sonderabfall entsorgt werden muss!

Verwendet also möglichst wenig davon. Unbenutze Iod-Lösung könnt ihr in einer braunen Flasche im Dunkeln (Schrank) gut aufbewahren und für weitere Nachweise verwenden (z.B.: Welche Gemüse/welches Obst enthält Stärke?).

Ich habe übrigens meine abgelaufene Betaisodona-Salbe zur Herstellung von Polyvidon-Iod-Lösung verwendet und ihr so ein zweites Leben verschafft, anstatt sie zu entsorgen.

Wenn trotzdem Iod-Reste anfallen, bringt diese zur Entsorgung in die Apotheke (zurück) oder zu einer Sonderabfall-Entsorgungsstelle (Schweiz: An der Hauptsammelstelle der Gemeinde; Deutschland: Schadstoffmobil).

Entsorgung von Ethanol (Brennsprit bzw. Spiritus)

Brennsprit ist unbegrenzt mit Wasser mischbar: Sehr kleine Mengen (einige Milliliter) können mit viel Wasser in den Ausguss entsorgt werden. Grössere Mengen müssen wie andere Lösungsmittel in den Sonderabfall gegeben werden. Wer einen sicheren Spiritusbrenner hat, kann den Alkohol auch abbrennen (in brandsicherer Umgebung, Feuer nicht unbeaufsichtig lassen!).

Und wenn ihr nun Lust auf weitere Experimente zu Hause mit Pflanzen habt, findet ihr sie gleich hier in Keinsteins Kiste:

Extrahiert das grüne Chlorophyll und weitere Blattfarbstoffe (die es auch in grünen Blättern gibt!) aus Blättern und trennt sie mittels Papierchromatographie!

Legt eine Hermetosphäre an und beobachtet, wie Pflanzen Monate und Jahre lang in einem abgeschlossenen Glas überleben!

Viel Spass beim Lesen und Experimentieren wünscht

Eure Kathi Keinstein

Hast du die Experimente nachgemacht:

[poll id=“37″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Habt ihr euch auch schon einmal gefragt, wovon Pflanzen eigentliche leben? Wie sie an Energie und Nährstoffe kommen, um zu wachsen, Blätter und Blüten zu bilden?

Im Biologiebuch ist nachzulesen, dass Pflanzen tatsächlich fast nur von Luft, Licht und Wasser leben können! Das erkannten die Naturforscher Johan Baptista van Helmont und Joseph Priestley schon zu Beginn des 17. bzw. im 18. Jahrhundert.

Wie genau die Pflanzen es anstellen, aus ein paar winzigen Molekülen feste Stängel, Blätter und Blüten zu formen, könnt ihr mit spannenden Experimenten zu Hause und aufmerksamen Sinnen draussen selbst ergründen!

Um dieses faszinierende Thema zu würdigen und euch möglichst viele Naturforscher-Anregungen zu geben, widme ich dem Leben der Pflanzen zwei Beiträge, die diese und nächste Woche erscheinen sollen. So zeige ich euch heute wie Pflanzen ihre Nahrung aufnehmen und „Abfall“-Stoffe abgeben können. Der nächste Beitrag ist dann ganz der Energie- und Materialgewinnung durch Photosynthese gewidmet.

Aber fangen wir am Anfang an.

Pflanzen im Detail: Wie sind diese Lebewesen aufgebaut?

Eine typische Grünpflanze besteht aus Wurzeln, ggfs. einem Stängel oder Stamm und grünen Blättern. Wasser dringt in durch die Wurzeln ein und bringt die wenigen Nährstoffe, die aus dem Boden stammen, mit, wenn es in die verschiedenen Teile der Pflanze gelangt. Die grünen Blätter (und Stängel) sammeln Licht, mit dessen Energie die Pflanze aus Luft-Bestandteilen ihre Hauptnahrung herstellen kann: Glucose bzw. Traubenzucker. So viel mag den allermeisten unter euch bekannt sein.

Aber wie finden all diese Stoffe in der Pflanze ihren Bestimmungsort?

Versuch 1: Blätter ganz, ganz aus der Nähe betrachtet

Seht euch doch einmal ein Blatt genauer an. Bei grossen Blättern – zum Beispiel denen eines Ahorn-Baumes – könnt ihr schon mit blossem Auge ein Netzwerk wie aus Adern sehen. Tatsächlich sind diese Adern das Gegenstück zu unserem Blutgefässsystem: Sie sind Leitungen, durch welche Wasser und Nährstoffe transportiert werden! Und wie in unserem Gefässsystem gibt es neben den grossen Blatt-Adern auch kleinere und winzig kleine Gefässe, die in jeden Winkel reichen.

Habt ihr eine starke Lupe oder sogar ein Mikroskop? Schon mit einfachen Hilfsmittel könnt ihr die feinen Äderchen in Blättern sichtbar machen. Mein einfaches USB-Mikroskop mit angeblich 100-facher Vergrösserung reicht dazu schon aus.

Anleitung zum Mikroskopieren

  • Klemmt zum Mikroskopieren ein frisches, möglichst dünnes Blatt zwischen zwei Objektträger und schiebt es mit der Unterseite nach oben in die Halterung unter der Linse (oder fixiert die Träger mit Klebestreifen, wenn euer Mikroskop keine Halterung hat).
  • Beleuchtet das Blatt von unten (mein Gerät ist mit Beleuchtung von unten und von oben ausgestattet – es gibt jedoch kleine, günstige LED-Leuchten, die für Freihand-USB-Mikroskope ohne Unterbau den gleichen Zweck erfüllen). Die fast farblosen Blatt-Adern werden zwischen dem undurchsichtig grünen Blattgewebe hell aufleuchten.
Blatt Anatomie vergrössert
Oberseite eines Blattes des Ranunkelstrauchs bei Licht von unten: Die durchscheinenden Blattadern leuchten hell zwischen den Bereichen, die grosse Mengen des grünen Blattfarbstoffs Chlorophyll enthalten.
  • Noch eindrücklicher ist die Beleuchtung der Blattunterseite von oben: Die kleineren Blatt-Adern erscheinen dunkel, grössere Adern und Haare stehen hell hervor. Mit geübtem Auge und scharfem Bild lassen sich bei 100-facher Vergrösserung sogar einzelne Strukturen innerhalb der grünen Zell-Inseln ausmachen!
Blatt Anatomie Ranunkelstrauch
Die Unterseite eines Blattes des Ranunkelstrauchs bei Licht von oben: Blattoberfläche und grössere Blattadern sind von feinen weissen Härchen besetzt.

Ich habe ein junges Blatt von meinem Ranunkelstrauch (Kerria japonica), einem beliebten Zierstrauch, der auf meinem Balkon wächst, gepflückt. Die Blätter dieser Pflanze fühlen sich samtig an, was ein weiteres Detail erahnen lässt. Und die Mikroskopaufnahme zeigt es deutlich: Diese Blätter sind behaart – die feinen Härchen auf der Unterseite erscheinen im Bild als weisse Würmchen. Dazwischen schimmern die feinen Blattadern, die sich zwischen dunkelgrünen Inseln verzweigen.

  • Um mehr zu sehen ist es nötig, einzelne Schichten eines Blattes unter das Mikroskop zu bringen. Klebt dazu einen durchsichtigen Klebestreifen auf ein frisches Blatt und drückt ihn sorgfältig an (aber ohne das Blatt gänzlich zu zerquetschen!). Zieht den Streifen dann mit einem Ruck wieder ab. Wenn nun grüne Teile des Blattes am Streifen heften und das Blatt an betreffenden Stellen nur noch aus farbloser, dünner Haut besteht: Perfekt! Ihr habt alles bis auf eine Aussenhaut des Blattes entfernt. Platziert diese farblosen Stellen nun zwischen zwei Objektträgern unter dem Mikroskop:
Dies ist die untere Aussenhaut eines frischen Blattes meiner Tomatenpflanze bei 100-facher Vergrösserung. Die winzigen Spaltöffnungen (sie sind ca. 0,05 – 0,1 mm klein!) sind als dunkelgrüne Punkte gut erkennen (die Ränder der Spalten enthalten den grünen Blattfarbstoff Chlorophyll, die übrigen Aussenhautzellen nicht). Diagonal durch das Bild verläuft ein Leitungsbündel, in dessen Umgebung ebenfalls chlorophyllhaltige Zellen haften geblieben sind.
  • Solltet ihr kein Mikroskop zur Hand haben, dafür aber eine Kamera mit Nahaufnahmen-(Makro-)Funktion, könnt ihr gegen das Licht durch grössere Blätter gleich an der Pflanze hindurch fotografieren und die Blattäderchen anschliessend auf einem grossen Bildschirm genauer betrachten (verwendet für solche Aufnahmen die bestmögliche Auflösung, dann könnt ihr am Bildschirm am weitesten hineinzoomen!).
Feigenblatt Makroaufnahme Gegenlicht
Ausschnitt aus einem Feigenblatt, gegen die Sonne aufgenommen (Samsung Galaxy NX, 16-50mm (kein Makro-Objektiv!), F/11, Belichtungszeit 1/200, ISO 100, Auflösung der Original-Aufnahme: 5472×3648 px)

Wer ein besseres Mikroskop hat, kann darüber hinaus sehen, woraus diese Inseln und alle anderen Teile des Blattes bestehen: Richtig, aus Zellen! Wie unsere Körperteile auch ist ein Blatt nämlich ein Organ, das sich aus vielen Zellen zusammensetzt. Und wer bei stärkerer Vergrösserung genau hinschaut, kann vielleicht eine aus Zellen zusammengesetzte Spaltöffnung in der Blattunterseite erkennen.

Am gründlichsten beobachtet Mensch übrigens beim Zeichnen! Wenn ihr möchtet, dass euch wirklich nichts entgeht, greift also zu Holzstiften und zeichnet ab, was ihr unter dem Mikroskop seht. Ich habe für euch eine Skizze des Längsschnittes durch ein Blatt, welche dessen Aufbau aus  Zellen zeigt.

Ein Blatt-Querschnitt aus der Nähe: Wie Blätter aufgebaut sind

Blatt-Anatomie: Querschnitt durch ein Pflanzen-Blatt
Skizze des Schnitts (von oben nach unten) durch ein Pflanzenblatt, wie er unter einem leistungsfähigen Lichtmikroskop erscheint: Blätter bestehen aus Zellen, die in unterschiedlichen Schichten angeordnet sind. Die Blattoberseite ist oben, die Unterseite ist unten. (By A.Spielhoff (Own work) [CC BY-SA 3.0], via Wikimedia Commons)

(a) und (g) Die meisten Blätter sind von einer schützenden Wachsschicht („Cuticula“) überzogen.

(b) und (f) Epidermis-Zellen: Diese Zellen bilden die „Haut“ des Blattes: Sie enthalten keinen grünen Blattfarbstoff und sind lichtdurchlässig.

(c) Palisadengewebe: Die Zellen sind hier dicht an dicht aneinander gereiht. Sie enthalten reichlich grünen Blattfarbstoff (Chlorophyll) und „verarbeiten“ viel Sonnenlicht bei der Fotosynthese.

(d) Schwammgewebe: Die Zellen sind hier weniger dicht beieinander und weniger regelmässig angeordnet. In den freien Räumen dazwischen (j) befindet sich Flüssigkeit.

(e) Leitungsbündel: Eine Blattader ist in zwei Sorten Leitungen, die gebündelt eine „Ader“ bilden, unterteilt: eine Sorte für Wasser und eine für die Fotosynthese-Erzeugnisse.

(h) Eine Spaltöffnung, gebildet von zwei benachbarten Zellen. Diese besonderen Zellen können sich je nach Wassergehalt berühren oder den Spalt offen lassen.

(i) Der Hohlraum hinter der Spaltöffnung ist mit Luft gefüllt und dient der Kohlendioxid-Aufnahme und der Sauerstoff- und Wasser(dampf)abgabe.


Verschiedene Blätter für verschiedene Standorte

Dabei ist Blatt keineswegs gleich Blatt. Vielmehr sind Blätter an den Standort ihrer Pflanze und damit an den gewünschten Einsatz im Photosynthese-Business angepasst: Blätter, die in der Sonne wachsen, sind voll mit Photosyntheseanlagen und erzeugen viel Material, das abstransportiert werden möchte. So sind solche Blätter kräftig und tiefgrün. Die Blätter von Schattenpflanzen sind hingegen zarter und von blassgrüner Farbe: Sie enthalten weniger Chlorophyll und sind somit nicht darauf ausgelegt, grosse Mengen Sonnenenergie zu verwerten. Stattdessen würden sie in der prallen Sonne Schaden nehmen.

Expedition 1: Finde Sonnen- und Schattenpflanzen!

Haltet die Augen offen, wenn ihr draussen unterwegs seid. Findet angepasste Sonnen- und Schattenpflanzen. Als Hinweis gebe ich euch je ein Beispiel:

Links: Sauerklee (Gattung Oxalis) ist eine typische Schattenpflanze mit zarten, hellen, grossflächigen Blättern. Er ist daher nur in schattigen Wäldern zu finden. Rechts: Unser Pfirsichbaum ist mit seinen dicken, tiefgrünen Blättern ein echter Sonnenanbeter.

Viele Bäume bilden sowohl Sonnen- und Schattenblätter an ein und derselben Pflanze! Betrachtet und befühlt die Blätter an tief hängenden Buchenästen. Könnt ihr beide Sorten finden, bestenfalls sogar am gleichen Baum? Sonnenblätter werdet ihr aussen bzw. oben am Rand der Baumkrone finden, wo sie das meiste Licht abfangen, während Schattenblätter weiter innen bzw. unterhalb des Blätterdachs zu finden sind. Klettert aber nicht ungesichert auf hohe Bäume! Wenn es keine tief hängenden Äste gibt, sind Sträucher und Hecken oder ein frisch umgestürzter Baum einfacher zu erreichende Fundstellen für zweierlei Laub!

Zwei Blätter ein und derselben Buche: Links ein Sonnenblatt vom Rand der Krone – es fühlt sich steif und ledrig an und ist dunkelgrün. Rechts ein Schattenblatt tief aus dem Gehölz – es fühlt sich dünner, fast zart an und ist heller. Achtung: An den Spitzen von Zweigen können sehr helle junge Blätter sein. Sucht daher in der Nähe der Zweig-Ansätze nach „echten“ Schattenblättern!


Nahrung rein, Abfall raus: Wie Blätter funktionieren

Im Organ Blatt werden die Kohlenstoff-, Wasserstoff- und Sauerstoffatome von Kohlendioxid und Wasser mit Hilfe von Lichtenergie zu Traubenzucker (Glucose) umgebaut (mehr dazu im Beitrag zur Photosynthese). Die nötigen Baustoffe müssen dazu aus der Luft bzw. aus dem Boden in die Blattzellen, genauer in die Chloroplasten, gebracht und der fertige Traubenzucker sowie Sauerstoff-„Abfall“ von dort fortgeschafft werden. Bloss haben Pflanzen kein schlagendes Herz, das die dazu nötigen Verkehrsströme antreiben könnte.

Dafür haben die Blätter ihre Spaltöffnungen mit den dahinter liegenden Hohlräumen. Durch die geöffneten Spalten kann Kohlendioxid in die Hohlräume eindringen (alle Gasteilchen sind ständig in Bewegung, sodass dazu kein gesonderter Antrieb nötig ist) und durch ihre grosse Oberfläche in das Innere des Blattes gelangen. Auf dem umgekehrten Weg gelangt Sauerstoff durch diese Öffnungen hinaus.

Wirklich genial ist der Trick, mit welchem Pflanzen ihr Wasser gegen die Schwerkraft aus dem Boden ziehen. Blätter können nämlich „schwitzen“, indem sie über ihre Spaltöffnungen Wasser abgeben. Dieses Wasser fehlt dann in den Blattzellen, die sich Nachschub aus den Blattadern holen. Der so entstehende „Unterdruck“ im Blattgefässsystem, das sich bis in die Wurzeln der Pflanze erstreckt, reicht aus, um Wasser aus dem Boden bis in die obersten Bereiche anzusaugen (Biologen nennen diesen Effekt dementsprechend „Transpirationssog“)! Und das funktioniert vom winzigen Kraut bis zu Dutzende Meter hohen Bäumen!

Dass der „Antrieb“ der Wasserversorgung in den Blättern, d.h. im oberen Teil von Pflanzen liegt, ist auch der Grund dafür, dass Schnittblumen in der Vase über viele Tage frisch bleiben können: Sie haben zwar keine Wurzeln mehr, aber durch das Schwitzen können sie auch durch das angeschnittene Leitungssystem in den Stängeln Wasser aus der Vase ansaugen.

Damit die Wasserversorgung der Pflanze nicht beim kleinsten Engpass aus dem Ruder läuft, hat jede Pflanzenzelle ein eigenes kleines Wasserreservoir, die Vakuole, in welcher sie Wasser zwischenlagern kann. Ausserdem verleiht eine prall gefüllte Vakuole ihrer Zelle eine pralle, steife Gestalt, die dazu beiträgt, das ganze Blatt bzw. die ganze Pflanze in Form zu halten.

Ihr möchtet den Beweis dafür erbringen? Hier ist er:

Versuch 2 : Die magische Pflanzen-Wiederbelebung

  • Giesst eine Topfpflanze so lange nicht oder stellt Schnittpflanzen in eine trockene Vase, bis ihre Blätter und Triebe schlaff (aber nicht spröde oder braun!) werden. Je nach Witterung kann das ein paar Stunden oder einen Tag dauern. Sehr gut funktioniert dieser Versuch zum Beispiel mit Sonnenblumen oder Blättern von Tomaten.

Wenn die Pflanze keinen Wassernachschub mehr hat, verbrauchen die Zellen ihre Vorräte aus den Vakuolen zum Schwitzen und für die Photosynthese. Die Entleerung ihrer Vakuole lässt die Pflanzenzelle erschlaffen, wie eine Ballonhülle ohne Luft darin.

  • Giesst nun die Topfpflanze reichlich oder gebt Wasser in die Blumenvase (und schneidet ggfs. den oder die Stängel noch einmal frisch an) und wartet wenige Stunden (z.B. bei Sonnenblumen) oder auch einen Tag (z.B. bei abgeschnittenen Tomatenblättern)..

Die zuvor schlaffe Pflanze wird sich in kurzer Zeit wieder aufrichten und straff und frisch aussehen, als wäre nichts gewesen!

Wiederbelebung Tomate Blatt
Ich habe meine Tomate ausgegeizt: Diese beiden Tomaten-Blätter in Bild 1 haben zwei warme Tage lang draussen unter der Tomatenpflanze gelegen: Sie hängen schlaff bis auf den Tisch. Nach der Aufnahme habe ich Wasser in das Glas gefüllt. Nach etwa 4 Stunden hat sich das rechte Blatt weitestgehend wieder aufgerichtet (Bild 2), nach 24 Stunden erscheinen beide Blätter frisch wie eben erst geschnitten (Bild 3).

Der Wassermangel in Zellen und Leitungssystem führt dazu, dass die Pflanze Wasser aus dem Boden bzw. der Vase ansaugt, sodass die Zellen ihre Vakuolen auffüllen können. So erhalten sie und die Pflanze ihre pralle, feste Gestalt zurück.

Damit Pflanzen bei warmer Witterung nicht drauf los schwitzen, bis sie austrocknen, können sich ihre Spaltöffnungen, die „Schweissporen“, nach Bedarf öffnen und schliessen: Ein solcher Spalt besteht aus zwei nebeneinander liegenden Zellen, die nicht fest miteinander verbunden sind. Nur wenn diese Zellen prall mit Wasser gefüllt sind, wölben sie sich so nach aussen, dass ein offener Spalt zwischen ihnen klafft. Wenn die Pflanze nicht genügend Wasser hat und die Schliesszellen erschlaffen, schliesst sich der Spalt, sodass die Pflanze nicht unnötig Wasser ausschwitzt.

Standortspezialisten unter den Pflanzen

Pflanzen wachsen nicht nur im Garten, auf der Wiese oder im Wald in gemässigtem Klima, sondern an den verschiedensten, zuweilen scheinbar unmöglichen Orten. Wie gelingt ihnen das? Die Pflanzenarten haben sich an ihren jeweiligen Standort, insbesondere an die dort vorhandene Wassermenge, gut angepasst.

Expedition 2 : Finde Pflanzen, die sich an unterschiedliche Wasserverfügbarkeit angepasst haben!

Pflanzen können anhand ihrer Anpassung an die Verfügbarkeit von Wasser in fünf übergeordnete Gruppen eingeteilt werden. In der Schweiz mit ihren vielfältigen Klimazonen könnt ihr Vertreter aller fünf Gruppen wild oder in Gärten finden. Ebenso gut könnt ihr diese kleine Expedition auch in einem botanischen Garten, im Gartencenter oder auf Reisen unternehmen.

Und hier sind für euch die fünf Pflanzengruppen:

Seerose

1. Wasserpflanzen: wachsen teilweise oder vollständig unter Wasser. Unterwasser-Pflanzen brauchen keine Spaltöffnungen, Pflanzen mit Schwimmblättern wie Seerosen nur an der Luftseite ihrer schwimmenden Blätter. Wasserpflanzen nehmen Wasser und darin gelöstes Kohlendioxid über ihre gesamte Oberfläche auf. Wurzeln haben sie daher kaum, denn die werden höchstens noch zum Festhalten benötigt.

Ausschliesslich an der Luft bzw. in trockenem Boden können Wasserpflanzen daher nicht überleben. Beispiel: Seerosen

Sumpfdotterblume

2. Pflanzen feuchter Standorte: findet man zum Beispiel in Regen- oder Nebelwäldern. Oder in Feuchtgebieten, die häufig mit Bodennebel aufwarten. Die extrem hohe Luftfeuchtigkeit an solchen Standorten hindert sie am „Ausschwitzen“ von Wasserdampf. Ihre grossen, dünnen Blätter können dank Rillen oder Haaren für eine noch grössere Oberfläche und vorgewölbten und damit „am Wind“ gelegenen Spaltöffnungen leichter Wasser abgeben.

Beispiel: Sumpfdotterblume (Caltha palustris – Achtung giftig, nicht anfassen!)

Übrigens: Manche Pflanzen, die auch bei „normaler“ Luftfeuchtigkeit zurecht kommen, können sich binnen kürzester Zeit an einen feuchten Standort anpassen. Solche eignen sich gut für die Bepflanzung einer „Hermetosphäre“. Die Anleitung zur Erschaffung eines solchen Gartens im Glas findet ihr übrigens hier!

Baeume im Fruehling

3. Pflanzen wechselfeuchter Standorte: Wachsen an Standorten, die nur gelegentlich feucht sind, d.h. flüssiges Wasser bieten. Dies können periodisch austrocknende Gebiete sein oder solche, in welchen es im Winter friert. „Wechselfeuchte“ Pflanzen legen in der trockenen Zeit eine Ruhepause ein: Sie werfen im Herbst die Blätter ab, ziehen sich in ein Minimum an Ausdehnung zurück oder überdauern die Trockenheit als Samen.

Beispiele: Alle Laubbäume, die im Herbst die Blätter verlieren, viele einjährige Pflanzen

Olivenbaum

4. Pflanzen trockener Standorte: In trockener Luft müssen Pflanzen das Schwitzen einschränken, um nicht zu verdursten, und ihr Wasser aus einem grossen Bereich des Bodens zusammenklauben. Sie haben daher ausgeprägte, tief oder weit reichende Wurzeln und kleine derbe Blätter mit dicker Wachsschicht. Die zahlreichen Spaltöffnungen darin befinden sich in kleinen Senken in der Blattoberfläche,

sodass Wasser nicht so leicht daraus entweichen kann. Beispiel: Olivenbaum (Olea europaea)

Hauswurz Rosetten

5. Pflanzen extrem trockener Standorte, auch als Sukkulenten bekannt: haben die Möglichkeit, Wasser in ihrem Innern langfristig zu speichern. Ihr Wasserspeichergewebe ist von einer festen, oft wehrhaften (Dornen, Stacheln!)  Aussenhülle umgeben. Sukkulenten haben eine kleine Oberfläche, d.h. Blätter sind – wenn vorhanden – sehr dick und fleischig.

Spaltöffnungen sind in geschützen Bereichen (z.B. Rillen eines Kaktus) abgesenkt. Beispiel: Hauswurz (Gattung Sempervivum)

All diese Spezialisten haben jedoch eines gemeinsam: Sie betreiben Fotosynthese! Und was sich dahinter verbirgt – wie Pflanzen aus Lichtenergie Nahrung gewinnen können – erfahrt ihr nächste Woche im zweiten Beitrag zum geheimnisvollen Leben der Pflanzen. Bis dahin wünsche ich euch viel Spass beim Erkunden und Experimentieren. Berichtet doch gleich hier im Kommentar von euren Erlebnissen!

Eure Kathi Keinstein

Hast du die Experimente nachgemacht: 

[poll id=“38″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Reisen zu Hause – das scheint das Motto dieses Frühlings zu sein. Und da ich das Glück habe, dort zu wohnen, wo manch andere Ferien machen, stelle ich euch heute mein Zuhause mitten in der Schweiz vor: Ein wahres Paradies für Naturforscher, das ich spielerisch mit euch erkunden möchte! So ist dieser Beitrag zunächst Teil gleich zweier Blogparaden um das Erleben der eigenen Heimat, nämlich der Blogparade „Heimatliebe – Zeig uns deine Heimat“ von SOS-Fernweh und der Blogparade „Reise vor der Haustür – ein Experiment“ von 1 Thing To Do. Da das Thema dieses Jahr wahrhaft weite Kreise zieht, ist mein spielerischer Erkundungsgang zuhause nun auch Teil der Blogparade Urlaub in der eigenen Stadt – Geht das? im „Joy Valley“ (und tatsächlich habe ich kürzlich gelernt, dass unser 10’000-Seelen-Dorf sich selbst stolz als „Kleinstadt“ bezeichnet).

Der obere Zürichsee: Ein Paradies für Naturforscher und -beobachter

Für mich gibt es nichts spannenderes als die Welt zu erkunden, ob nun entfernte Winkel der Schweiz, der umliegenden Länder oder atemberaubende Ziele in Übersee… Wirklich? Eigentlich liegt die faszinierende Natur doch gleich vor meiner Haustür! Meine Wahlheimat liegt nämlich am oberen Zürichsee, mitten in den Schweizer Voralpen. Schon als ich vor 11 Jahren meinen ersten Sommerurlaub hier am Seeufer verbrachte, fiel mir auf, wie unglaublich klar hier das Wasser ist. Insbesondere im Vergleich mit den Baggerseen und dem grossen Strom, den ich bislang vom Niederrhein-Gebiet her kannte. Man kann hier auf einem Steg oder einer Ufermauer sitzen und ohne weitere Hilfsmittel beobachten, was unter Wasser vor sich geht – bei günstigem Lichteinfall bis in 2 bis 3 Meter Tiefe!

ausnehmend klares Wasser im Zürichsee

Anfang April: Schilf-Inseln am seichten Seeuferbereich

 

Doch nicht nur der See selbst lädt zum Beobachten, Staunen und Geniessen ein – im Sommer gerne mit dem ganzen Körper bei einem kühlen Bad – sondern auch um und über Wasser bietet er ein wahres Paradies für Naturbeobachter und -entdecker: Rund um unser Dorf sind weite Teile des Uferbereichs naturbelassen oder renaturiert. Feuchtwiesen, Schilfflächen und ufernaher Baumbestand fügen sich zu einer idyllischen Landschaft zusammen, die zahlreichen Vogelarten, Wassertieren und Pflanzen eine Heimat bietet.

Lebensraum für Vögel und Vogelfreunde

Enten, Schwäne und „Taucherli“ (Blässhühner bzw. -rallen) mögen nicht nur hierzulande allgegenwärtige Wasserbewohner sein, doch habe ich am Zürichsee schon viele aussergewöhnliche Bewohner und Gäste beobachten können. Graugans, Kiebitz und die Flussseeschwalbe sind nur einige davon. Dazu kommen Vögel, die man eigentlich vom Meer her kennt, wie die Lachmöwe und den Kormoran.

Höckerschwan mit Gelege im Schilf

Höckerschwan mit Gelege im Schilf (CC BY-SA 4.0 by Reto Lippuner)

 

Ein Highlight im „Frauwinkel“, der geschützten Uferzone, welche sich direkt an unser Dorf anschliesst, ist der grosse Brachvogel. Diese seltenen Zugvögel können im Frühjahr vom Spazierweg entlang des Sees aus beobachtet werden, wenn sie hier zum Brüten Halt machen. Damit die Tiere dabei möglichst ungestört bleiben, ist der Wegabschnitt mit der besten Beobachtungsmöglichkeit mit hölzernen Sichtschutzwänden samt Sehschlitzen ausgestattet – ein Eldorado für Ornithologen!

Raum für Pflanzen, Tier und Mensch

Doch nicht nur Vogelfreunde kommen am Zürichsee auf ihre Kosten. Im Wasser und den feucht-grünen Uferbereichen leben viele weitere Tiere. Frösche, Schwanzlurche, Wasserschnecken, Ringelnattern, Kreuzspinnen und zahllose Insektenarten vom Schmetterling bis zum Wasserläufer sind nur einige davon. Und Wohnraum und Nahrung finden all diese Tiere dank einer Vielfalt von Pflanzen.

Blick über den Frauwinkel am Zürichsee

Blick vom Wanderweg über die Feuchtwiesen im Frauwinkel

 

Und auch der Mensch kommt nicht zu kurz. Um den Frauwinkel – wie der Name sagt ein Winkel zwischen dem Ufer vor unserem Dorf und dem Seedamm, über den der Auto- und Bahnverkehr zwischen den beiden Seeufern fliesst – führt ein Wander- und Radweg, von welchem aus man die weiten Uferwiesen überblicken kann. Teilweise werden diese bewirtschaftet – passend zur feucht-wilden Umgebung weiden auf wegnahem Bereich zottige Galloway-Rinder, wie man sie sonst aus dem schottischen Hochland kennt. Und es ist sogar schon vorgekommen, dass der Galloway-Stier (ein ganz friedlicher Bursche!) sich zu einem Spaziergang auf dem Wanderweg in Richtung Seedamm aufgemacht hat…

Wanderweg in Hurden in Richtung Seedamm

Spazierweg in Richtung Seedamm – heute ohne Stier

Der Zürichsee für Naturforscher

Für euch Naturforscher könnte ich nun einen langen Artenkatalog als Bestimmungshilfe für eure Entdeckungen zusammenstellen… oder das Entdecken zu einem Spiel für kleine und grosse Forscher machen, das garantiert jeden Spaziergang zu einem kurzweiligen Spass macht:

 

Entdecker-Bingo „Rund um den Zürichsee“

Wer kennt nicht das Bingo-Spiel? Jeder Mitspieler erhält eine Karte mit einem Raster, gefüllt mit verschiedenen Zahlen. Ein Spielleiter lost Zahlen aus und gibt sie bekannt, sodass die Mitspieler auf ihrer Karte „getroffene“ Zahlen markieren können. Wer dabei zuerst ein vorgegebenes Muster aus Markierungen zusammen hat, tut durch den Ausruf „Bingo!“ kund, dass er oder sie gewonnen hat.

Das klassische Zahlenbingo kann man überall spielen, wo man zusammen sitzt. Ein ausgiebiger Spaziergang am See ist hingegen die perfekte Gelegenheit für eine Runde Entdecker-Bingo!

Die passenden Bingo-Karten dafür kannst du hier gratis downloaden und ausdrucken: Anstelle von Zahlen findest du darauf verschiedene Tiere, die im Frauwinkel und weiteren Naturschutzgebieten rund um den Zürichsee leben. Die Rolle des Spielleiters übernimmt die Natur selbst:

Spielregeln für Entdecker-Bingo

  • Jeder Mitspieler oder jedes Team (2 bis beliebig viele Spieler oder Teams können mitmachen) erhält eine eigene Bingokarte (klebe den Ausdruck am besten auf eine feste Unterlage oder verwende ein Klemmbrett). Wenn du die Karten laminierst, können Markierungen mit wasserfesten „Edding“-Schreibern nach dem Spiel mit etwas Alkohol entfernt und die Karten wiederverwendet werden!
  • Ein Markierungs-Muster wird als Ziel-Vorgabe festgelegt. Das Feld in der Mitte des Rasters von 5×5 Feldern ist Teil davon. Es wird wie beim klassischen Bingo vor Spielbeginn von allen markiert. Einfache Muster sind senkrechte, waagerechte oder diagonale Reihen über die ganze Karte. Sei kreativ und erfinde weitere!
  • Macht euch, jeder mit Bingokarte und Schreiber bewaffnet, auf zum Spaziergang. Wer eine der auf seiner Karte abgebildeten Tiere oder Pflanzen entdeckt, macht die Mitspieler darauf aufmerksam. Bestimmt gemeinsam, ob die Art richtig erkannt worden ist!

Und nun gibt es zwei Spiel-Varianten:

  • Das schnelle Spiel (hierzu müssen sich alle verwendeten Bingokarten in der Anordnung ihrer Felder unterscheiden – ganz wie beim klassischen Bingo!): Ist eine Art richtig erkannt worden, dürfen alle Mitspieler sie auf ihrer Karte markieren.
  • Die Variante für lang anhaltende Spannung (kann mit mehreren identischen Bingokarten gespielt werden): Nur der Entdecker darf die gefundene Art auf seiner Karte markieren. Dafür dürfen die anderen Spieler weitere Exemplare der gleichen Art „noch einmal“ für sich entdecken – Spieler, die die Art bereits markiert haben, halten sich bei solchen Funden zurück. Einigt euch bei dieser Variante vor Spielbeginn darauf, wie ihr Vogelscharen, Insektenschwärme und Pflanzengruppen zählen möchtet (bietet eine Gruppe ein Exemplar für jeden, oder muss jeder Spieler „seine“ eigene Gruppe finden?).
  • Für beide Varianten gilt: Wer das vorgegebene Markierungsmuster zuerst vollendet hat, darf laut (nicht zu laut – erschreckt die Tiere nicht!) „Bingo!“ rufen und hat die Runde gewonnen. Natürlich kann im Anschluss noch um den zweiten und folgende Plätze gespielt werden.

 

Eine Entdecker-Bingokarte für euch zum Ausdrucken

Ich habe eine Entdecker-Bingokarte für Spaziergänge am Seeufer für euch zusammengestellt. Sie enthält 24 Tierarten, die im Frühling hier beobachtet haben und von euch beobachtet werden können. Diese Karte kann jedoch nicht nur am oberen Zürichsee verwendet werden, sondern auch an anderen Seen in der Schweiz und naturbelassenen (Süsswasser-)Gewässern in Mitteleuropa verwendet werden. Das können Flussauen, Stauseen, renaturierte Baggerseen und ähnliche Landschaften sein!

Holt euch hier das pdf-Dokument zum Ausdrucken! Nutzt die erste Seite als Bingo-Karte zum Spielen. Die folgenden Seiten enthalten kurze Erläuterungen zu den Arten oder Gattungen sowie einige Tipps, wo genau ihr nach ihnen Ausschau halten solltet. Einige Tiere sind geradezu allgegenwärtig, andere schwieriger zu finden, sodass Spannung ohne Frust gegeben ist.

Wenn ihr mit verschiedenen Karten spielen möchtet, schneidet die ausgedruckte Karte einfach auseinander und setzt die Felder neu zusammen – das „Keinsteins Kiste“-Feld soll dabei stets in der Mitte bleiben, denn es gilt immer als markiert!

Fazit

Am Zürichsee mögen wir paradiesisch wohnen, doch gibt es in so vielen Gegenden, die wir unsere Heimat nennen, Spannendes zu entdecken. So kann das Zürichsee-Bingo auch in den Rhein-Auen meiner Geburtsheimat im Rheinkreis Neuss am Niederrhein gespielt werden. Haltet die Augen (und Ohren und Nasen) offen und lasst all die kleinen und grossen Wunder in eurer Nähe euren Alltag erhellen – Es lohnt sich!

Das Ausflugsziel für Naturforscher mit Frühlingssehnsucht: Tropische Welt der Schmetterlinge im Papiliorama Kerzers. Hier holen mein Partner und ich uns alle Jahre wieder in der dunklen Jahreszeit eine Dosis Wärme, Licht und Abenteuer mit faszinierenden Tieren. Daher ist dieser Beitrag allein aus meinem Antrieb entstanden, dieses Abenteuer mit euch zu teilen. Die Bilder stammen von meinem Lebensgefährten und Hausfotografen und erscheinen hier mit freundlicher Genehmigung der Stiftung Papiliorama.

Was ist das Papiliorama?

Mitten auf einem flachen Acker am Rand des Kantons Fribourg erhebt sich ein Komplex aus mehreren futuristischen Kuppeln, unter welchen sich eine warme, exotische Welt voller Farben und zauberhafter Bewohner verbirgt: Das Papiliorama Kerzers. Der Name verrät, was hier zu finden ist – denn Kerzers liegt am Rande der Westschweiz, wo man Französisch spricht. Und das französische „Papillon“ bedeutet „Schmetterling“.

Mit Schmetterlingen hat hier auch alles angefangen. Das Papiliorama wird von einer gemeinnützigen Stiftung betrieben, die auf den niederländischen Biologen Maarten Bijleveld van Lexmond und seine Frau zurückgeht. Das Ehepaar gründete 1988 im Kanton Neuenburg ein erstes Schmetterlingshaus, welches später aus Platzmangel in das weitläufigere Dreiseenland um Kerzers umgesiedelt wurde. Seither sind zur Schmetterlingskuppel zwei weitere Tropen-Landschaften voller exotischer Tiere und Pflanzen hinzugekommen.

Für einmaligen Eintritt können die Kuppeln und Aussenanlagen den ganzen Besuchstag lang nach Belieben betreten werden, um den darin meist frei lebenden Tieren ganz nahe zu kommen. Das ist eine wunderbare Gelegenheit, um sich mit diesen faszinierenden Geschöpfen ganz genau zu beschäftigen!

Aktivitäten für Naturforscher im Papiliorama-Tropenhaus

Papiliorama

14 Meter hoch wölbt sich die 40 Meter hohe Kuppel des Papilioramas über einer phantastischen tropischen Landschaft. Mehrere Dutzend Pflanzenarten, darunter 16 Arten teils hoch aufragender Palmen, fügen sich zu einem üppigen Garten zusammen. Darunter sind Nektarspender und Futterpflanzen für Raupen – die ideale Heimat für rund 1500 Schmetterlinge aus allen tropischen Teilen der Welt, welche frei in der Kuppel fliegen!

1. Wieviele Schmetterlingsarten findest du?

Rund 60 verschiedene Schmetterlingsarten fliegen im Papiliorama. Die meisten davon werden von Züchtern eingekauft und treffen als Puppen ein, um im Papiliorama zu schlüpfen. So hängt von der Verfügbarkeit bei den Züchtern ab, welche Arten aktuell wirklich vorhanden sind (die meisten Schmetterlinge werden nach dem Schlüpfen aus der Puppe nur wenige Tage alt!). Zu entdecken gibt es aber immer reichlich.

Wenn du dich gleich am Eingang in die Kuppel links wendest und die Galerie erklimmst, findest du eine Tafel mit Abbildungen und Namen aller Arten (Deutsch – Französisch – Lateinisch), die dir beim Bestimmen hilft (Tipp: Ich habe die Tafel mit dem Smartphone abfotografiert, sodass ich sie überall im Papiliorama zur Hand hatte). Einige Arten vermehren sich übrigens frei im Tropengarten. Findest du ihre Raupen? (Tipp: Nicht alles, was nach Vogelkot aussieht, ist auch welcher!)

2. Schau genau hin: Wie ist der Körper eines Schmetterlings aufgebaut? Woraus bestehen die Flügel?

Die Schmetterlinge im Papiliorama zeigen kaum bis keine Scheu vor Besuchern. So lassen sie sich häufig auf den Pflanzen oder sogar auf dem Rücken deiner Begleiter ganz aus der Nähe betrachten. Wenn du eine Kamera mit Makroobjektiv oder -linse zum Aufschrauben hast, kannst du ausserdem faszinierende Nahaufnahmen machen.

Wie kommen Schmetterlingsflügel zu ihren schillernden Farben?

Ein besonderer Blickfang unter den farbenfrohen Faltern ist immer wieder der blaue Morpho (Morpho peleides). Dieser grosse Schmetterling (Flügelspannweite 10 – 15cm) ist im Flug kaum zu übersehen, denn seine Flügeloberseiten erstrahlen in irisierendem Himmelblau.

Diese in der Natur höchst unwahrscheinlich anmutende Farbgebung samt ihrem Metallic-Effekt entsteht nicht wie übliche Farben dadurch, dass die Flügeloberfläche einen Teil des weissen Lichts schluckt, das auf sie fällt. Stattdessen wird das einfallende Licht an der Oberfläche auf raffinierte Weise gestreut und zurückgeworfen (reflektiert). Die Oberfläche von Schmetterlingsflügeln ist nämlich nicht glatt, sondern besteht aus unzähligen winzigen Schuppen, die ihrerseits in noch winzigere Lamellen unterteilt sind.

Flügelschuppen eines Tagpfauenauges unter dem Rasterelektronenmikroskop (By SecretDisc 11:39, 16 January 2007 (UTC) (Own work) [GFDL or CC-BY-SA-3.0], via Wikimedia Commons)

Jede dieser Schuppen reflektiert für sich das auf sie fallende Licht, sodass sich die einzelnen Lichtwellen auf dem Weg in unser Auge begegnen und überlagern können (Lichtwellen haben die Eigenart, sich je nach Art und Weise der Überlagerung zu verstärken oder auszulöschen). Auf unserer Netzhaut trifft so schliesslich ein atemberaubendes Muster von Lichtwellen ein, das unser Gehirn zu einem schillernden Schmetterlingsflügel zusammensetzt. Die Flügel des blauen Morphos bestehen zum Beispiel aus zwei Lagen von Schuppen. Die untere Lage ist dabei besonders aufgerauht und sorgt für die Farbe, während die obere Lage durchsichtig ist. Dennoch reflektieren auch die durchsichtigen Schuppen gleich winzigen Brillianten Licht. Durch Überlagerung (Interferenz) der Lichtwellen von den farbigen Schuppen mit jenen von den durchsichtigen Schuppen entsteht schliesslich der schillernde Effekt. Mehr zur Entstehung dieser sogenannten Strukturfarben findest du übrigens hier.


3. Schaue den Schmetterlingen beim Schlüpfen zu!

Gleich hinter dem Eingang zur Kuppel des Papilioramas ist die grosse Vitrine, die als Brutkasten für die Schmetterlinge dient, nicht zu übersehen. Hier werden die Puppen, welche von Züchtern eingekauft werden, sorgfältig an Stangen aufgereiht und beschriftet. So können die Besucher durch die Glasscheibe beobachten, wie die fertigen Falter sich langsam aus ihren Kokons schälen und anschliessend auf den leeren Hüllen oder den Haltestangen ihre Flügel zu voller Pracht entfalten.

Dreimal an jedem Besuchstag (die Zeiten sind an einer Tafel am Eingang zur Kuppel angegeben) erscheint ein Mitarbeiter des Papilioramas und entlässt die geschlüpften Falter in die Freiheit des Tropengartens. Dabei kannst du viel Spannendes rund um die Schmetterlinge und das Papiliorama erfahren und den Mitarbeiter bzw. die Mitarbeiterin mit deinen Fragen löchern.

Die Metamorphose der Schmetterlinge

Aus Schmetterlingseiern schlüpfen weiche, vielfältig gestaltete Raupen, die abgesehen von ihren Stummelfüsschen kaum unterscheidbare Gliedmassen haben und mühsam auf Blättern und Zweigen umher kriechen müssen. Die Raupen sind für ihren Appetit berüchtigt: Ihre einzige Lebensaufgabe scheint das Fressen von Grünzeug zu sein. Sobald sie dabei gross und dick geworden sind, geschieht jedoch etwas seltsames: Eine Raupe hüllt sich selbst in eine feste Schale, einen Kokon bzw. eine Puppe, ein – meist in einem geschützten Winkel an einem Zweig hängend. Und dann geschieht – scheinbar – einige Tage lang nichts mehr. Bis die Puppe schliesslich aufplatzt und sich ein noch reichlich zerknautscht aussehender Schmetterling mit Beinen, Antennen und Flügeln herauszwängt.

Und tatsächlich ist in der Puppe ein neues Tier entstanden. Wie praktisch alle ausgewachsenen Insekten haben Schmetterlinge einen steifen, unveränderlichen Chitinpanzer – auch die Flügel bestehen übrigens aus Chitin. Und dieser Panzer kann nicht wachsen. Deshalb ein Schmetterling (wie viele andere Insekten auch) sein Leben nach dem Schlüpfen aus dem Ei in einer anderen Gestalt: Der weichen Raupe, die sich häuten und wachsen kann. Und das ist dann auch die einzige Lebensaufgabe einer Raupe: Fressen und „Speck“ ansetzen, der später einmal als Baumaterial für den Schmetterling dienen muss.

Sobald die Raupe ihr Endgewicht erreicht hat, verpuppt sie sich, um vor den Widrigkeiten der Welt draussen geschützt zu sein. Und dann verdaut sie sich regelrecht selbst. Durch Hormone vermittelte Botschaften setzen Verdauungssäfte frei, die nahezu den ganzen Raupenkörper in seine molekülgrossen Einzelteile auflösen. Man kann daher sagen, dass die Raupe in ihrem Kokon stirbt. Beinahe zumindest.

Denn einige wenige spezielle Zellen, „Histioblasten“ genannt, in welchen der Bauplan für den Schmetterling hinterlegt ist, bleiben übrig. Diese Zellen machen nur wenige Prozent des gesamten Inhalts der Puppe aus und dienen als Ursprung für die Körperteile des Schmetterlings. Der wird nämlich aus dem Material der einstigen Raupe ganz neu zusammengesetzt. Und sobald der neue Falter fertig ist, schält er sich aus seiner Puppenhülle, die er nun dank seines eigenen Chitinpanzers nicht mehr braucht.

Danach heisst es für den frischgeschlüpften Schmetterling, sein Blut in Wallung zu bringen. Denn erhöhter Blutdruck treibt sein Blut in die winzigen Adern in seinen noch arg zerknautschten Flügeln, sodass die prall gefüllten Blutgefässe die Schwingen zur vollen Pracht spreizen können. Erst danach ist der Schmetterling in der Lage, sich in die Lüfte zu erheben, einen Partner zu suchen und neue Eier zu befruchten bzw. zu legen, aus welchen wiederum wachsende Raupen schlüpfen.


4. Spüre weitere Bewohner der Kuppel auf

Neben den Schmetterlingen bevölkern weitere Tiere die Kuppel des Papilioramas. Dazu gehören Vögel wie die kleinen, farbenfrohen Nektarvögel, der eindrucksvolle Rothaubenturako, Zwergwachteln und verschiedene Enten. In den Teichen am Grund des Tropengartens schwimmen tropische Fische, und wer aufmerksam hinschaut, mag sogar die gut getarnten Stabschrecken oder einen schlafenden Flughund entdecken. Findest du diese oder noch andere Tiere?

Und als ob das noch nicht genug wäre: Nocturama & Dschungel-Trek

 
5. Erkunde die nächtliche Tierwelt des Regenwaldes

Achtung! Wenn du die Kuppel des Nocturamas betrittst, wirst du erst einmal im Dunkeln stehen. Dabei ist es dort längst nicht so dunkel, wie es den Anschein hat. Die dunkle Verkleidung des Kuppeldachs ist nämlich so lichtdurchlässig, dass sie vom Tageslicht eben so viel hinein lässt, dass eine Vollmondnacht vorgetäuscht wird. Nimm dir deshalb Zeit, ehe du den Rundgang durch die Welt des nächtlichen Dschungels in Angriff nimmst und gehe bestenfalls eine zweite Runde. Denn deine Augen gewöhnen sich langsam an die Dunkelheit: Die Pupillen weiten sich und lassen mehr Licht auf die Netzhaut, sodass dein Sehvermögen sich zunehmend verbessert.
Dann halte die geweiteten Augen offen und entdecke die exotischen Greifstachler (diese Tiere kannte ich vor meinem ersten Besuch im Nocturama übrigens nicht), gar nicht träge Faultiere (die des Nachts vergleichsweise erstaunliche Geschwindigkeiten erreichen können), die quirligen Nachtaffen (welche von der Natur mit riesigen, immer weiten Augen perfekt für das Nachtleben ausgestattet sind), das emsige Gürteltier und viele weitere faszinierende Tiere.
Der Rundweg führt im Übrigen auch durch eine echte Fledermaus-Höhle und wird von den Tieren dementsprechend gerne als Einflugschneise benutzt. Dabei ist meineswissens noch kein Besucher angerempelt worden…Das Echolot lässt offenbar eine atemberaubend schnelle Ortung bewegter Hindernisse zu!

6. Erkunde das Shipstern-Reservat in Zentralamerika im Jungle-Trek

Die Stiftung Papiliorama ist eng verknüpft mit der Corozal Sustainable Future Initiative (CSFI), die im zentralamerikanischen Belize ein 235km^2 grosses Regenwald-Schutzgebiet unterhält. Damit du nun nicht über den grossen Teich reisen musst, um dir das anzusehen, beherbergt die Kuppel des „Jungle-Trek“ die Nachstellung eines kleinen Ausschnitts dieses Paradieses auf Erden – komplett mit Original-Pflanzen und -Tieren. Auf verschlungenen Wegen kannst du so die Dschungel-Welt erkunden und ihren frei lebenden Bewohnern begegnen. Auf einer Wendeltreppe geht es zudem bis hinauf in die Baumwipfel!

Zu den Tieren, die hier leben, gehören der farbenfrohe Tukan, Leguane, der einem Truthahn ähnliche Turberkelhokko und viele andere. Welche Tiere findest du im Dschungel?

Für die wärmeren Jahreszeiten

 
7. Finde Tiere zum Streicheln und lerne die Insekten Mitteleuropas kennen

Auch die einheimische Natur kommt im Papiliorama nicht zu kurz. Ganz besonder im Sommer locken die Aussenanlagen mit Streichelzoo, Ententeich, spannenden Wasserspielplätzen und Platz zum Ausruhen und sich verpflegen. Im „Chlitierli-Zäut“ (für nicht des Berndeutschen mächtige: „Kleintier-Zelt“) kannst du zudem die Welt der einheimischen Insekten und anderer kleiner Krabbeltiere entdecken.

Und sonst noch

Zum Papiliorama gehören ausserdem ein Imbiss (als wir dort vor Jahren zum letzten Mal gegessen haben, waren wir jedoch nur mässig begeistert vom Angebot) und ein grosser Shop, in welchem vom Plüschtier über Bücher bishin zu spannenden Gadgets für kleine und grosse Forscher und echten Dschungelpflanzen für das heimische Wohnzimmer alles erhältlich ist, was das Naturliebhaber-Herz begehrt. Achte bei den Pflanzen jedoch auf Schädlings-Befall: Wir haben bei unserem letzten Besuch Ende 2016 leider viele Pflanzen im Verkauf befallen vorgefunden!

Fazit

Das Papiliorama ist (nicht nur) an kalten Wintertagen eine warme Oase voller exotischer Lebewesen, die sich spielend einen halben bis ganzen Tag lang entdecken und beobachten lassen. Dabei gibt es nicht nur über die Tiere und Pflanzen selbst, sondern auch über ihre Gefährdung und das Shipstern-Reservat für Gross und Klein viel Spannendes zu lernen. So machen wir, zwei ‚grosse‘ Naturfreunde inzwischen Mitte 30, uns regelmässig zwischen den Jahren nach Kerzers auf, um dem dunklen und kalten Winter für einen Tag zu entfliehen.

Möchtest du es uns gleich tun? Hier erfährst du, wie du zum Papiliorama kommst und was du sonst noch wissen musst.

Und wenn die kleinen Naturforscher nach dem winterlichen Besuch mit dem Erkunden der einheimischen Krabbeltier-Welt nicht bis zum Frühling warten möchten, gibt es übrigens auch hier viele spannende Geschichten zu den „Wiesenhelden“ Mitteleuropas!

Und hast du schon einmal das Papiliorama besucht? Oder ein ähnliches Schmetterlings- oder Tropenhaus?

Dieser Artikel enthält Affiliate-Links aus dem Amazon-Partnerprogramm (gekennzeichnet mit (*) ) – euch kosten sie nichts, mir bringen sie vielleicht etwas für meine Arbeit ein. Ich habe für diese Rezension ein Rezensionsexemplar des Buches erhalten. Es besteht kein Interessenkonflikt hinsichtlich des Inhalts in diesem Beitrag und dessen Publikation.

Die Geschichten in Keinsteins Kiste drehen sich in der Regel um den Alltag von heute – und der allein hat reichlich Spannendes zu bieten. Und manchmal scheint es gar so, als wäre die Wissenschaft fertig, könne alles erklären, was das Leben bietet, als könne die Technik alles leisten, was man zum Leben braucht. Und doch erwarten uns im Alltag von morgen unzählige neue Geschichten, die heute noch geradezu unglaublich klingen mögen – oder eben nach Science Fiction. Und genau diesen Geschichten widmet sich der Physiker Gerd Ganteför in seinem spannenden Buch „Heute Science Fiction, morgen Realität? – An den Grenzen des Wissens und darüber hinaus“.

[…]Doch Forschung ist nie am Ende und die Faszination der Wissenschaft ist ungebrochen, so Ganteför. Schliesslich gebe es Tausende von offenen und sehr spannenden Fragen.

Gibt es ein Ende der Welt? Sind wir dazu verurteilt, alt und schwach zu werden und zu sterben? Gibt es ausserirdisches Leben? Werden wir neue und unerschöpfliche Energiequellen entwickeln?

Diese und viele andere Fragen aus verschiedenen Diziplinen der Naturwissenschaft, die heute längst nicht nur Wissenschaftler bewegen, diskutiert Ganteför in seinem Buch – und die Häufigkeit, mit welcher er dabei zu der Antwort „möglich“ oder gar „bald möglich“ kommt, lässt mich staunen.

Zum Inhalt des Buches

Gibt es eigentlich noch etwas zu entdecken oder wissen wir schon alles? Werden wir immer einen Grossteil unseres Lebens arbeiten müssen, um unseren Lebensunterhalt zu verdienen? Wird es immer Krankheiten geben? […] Werden wir jemals die Sterne erreichen?

Diese Fragen, welche am Anfang des Buches stehen, lassen schon erahnen, dass die Forschung nicht nur in Ganteförs Augen noch lange nicht „fertig“ ist. Es gibt noch zahlreiche spannende und überaus weltbewegende Fragen zu beantworten. Überdies sind Visionen und die Forschung daran notwendig für eine weitere Entwicklung und damit den Erhalt der menschlichen Zivilisation.

So soll Ganteförs Buch in einer Zeit, in welcher viele Menschen dem wissenschaftlichen Fortschritt skeptisch gegenüber stehen, Möglichkeiten bzw. Chancen für die Bewältigung der heutigen grossen Probleme der Gesellschaft, die die Wissenschaft von morgen eröffnet, aufzeigen. Dazu sollen in verschiedenen Bereichen der Wissenschaft die Grenzen des heutigen Wissens aufgezeigt werden, um dann einen Blick darüber hinaus auf das zu wagen, was uns hinter diesen Grenzen Aufregendes und Nützliches erwartet.

Ganteför beginnt seinen Rundgang ganz und gar nicht bescheiden mit dem Universum selbst. Zu Beginn miit den Eckdaten unseres Kosmos ausgerüstet geht es an die Fragen nach einer zweiten Erde irgendwo da draussen und möglichem Leben darauf. Mit Wasser scheint beides möglich, doch angesichts des unermesslichen Platzes im Universum und der Zeit, die die Evolution benötigt, ist laut Ganteför fraglich, ob zwei intelligente Zivilisationen in erreichbarer Nähe und zeitgleich erscheinen.

Daraus ergibt sich förmlich die Frage nach Reisen zu den Sternen. Da der Hyperraum uns, könnten wir ihn erreichen, uns der unverletzlichen Kausalität wegen die Rückkehr verweigern und das Beamen an den gleichen unfasssbaren Ressourcenmengen, wie sie schon Lawrence M. Krauss vor 19 Jahren in „Die Physik von Star Trek“ beschrieb, scheitern würde, bleibt uns für Langstreckenreisen im Weltraum letztlich die Kombination von Fusionsenergie und einem Staubstrahltriebwerk, das seinen Treibstoff während seiner Reise aus dem Raum aufliest.

Bei der näheren Betrachtung möglicher Energiequellen der Zukunft beschreibt Ganteför neben schwarzen Löchern als recht unwahrscheinliche künftige Energiequelle die Fusionsreaktoren, an welchen heute schon geforscht wird. Die Kernfusion bekommt man darin sogar hin – allerdings sie die Geräte für irgendeine Anwendung noch bei Weitem zu sperrig.

So wendet sich Ganteför als nächstes den Visionen der Biologie zu. Können die Dinosaurier wiederz um Leben erweckt werden? Das ist seit Jurassic Park wohl eine der populärsten Fragen an die Biologie. Unglücklicherweise hält sich DNA, wie gut sie auch konserviert ist, nicht länger als etwa eine Million Jahre, was die Dinos unerreichbar macht. Der Wiederbelebung in jüngerer Zeit ausgestorbener Arten sind Wissenschaftler jedoch aufregend nahe gekommen – wie auch der Molekularbiologie Martin Moder in „Treffen sich zwei Moleküle im Labor“ zu berichten weiss.

Eine weitere grosse Frage der Biologie ist jene nach dem Ursprung des Lebens – der heute im Umfeld heisser Quellen am Meeresgrund vermutet wird, wo die ersten Moleküle, die sich selbst reproduzieren können, entstanden sein mögen. Und da man über derartige Moleküle schon ziemlich viel weiss, ist laut Ganteför auch eine „synthetische“ Biologie von Menschenhand designter Lebewesen denkbar.

Die grossen Visionen der Medizin sind bei Ganteför die Fragen nach der Heilbarkeit aller Krankheiten einschliesslich Nervenverletzungen durch Unfälle, nach einem ewigen Leben oder zumindest einem verlangsamten Altern und der Erschaffung von „Supermenschen“. In allen drei Bereichen führt Ganteför das Verstehen von Körperfunktionen im ganz Kleinen (also auf molekularer Ebene) als Voraussetzung für diese grundsätzlich möglichen Errungenschaften an und gewährt spannende Einblicke in Gegenstände heutiger Forschung unter anderem zu personalisierter Medizin, Regeneration von Nervengewebe und zu den möglichen Gründen dafür, dass wir altern.

Von der Regeneration von Nervengewebe geht es im Kapitel „Geist und Bewusstsein“ zu den Möglichkeiten der Direktverbindung zwischen Computer und Gehirn: Kann man Daten von einem Computer ins Gehirn laden – oder umgekehrt den Inhalt eines Gehirns samt Bewusstsein auf einen Computer-Speicher schreiben? Können Computer Gedanken lesen? Oder gar selbst eine künstliche Intelligenz entwickeln? Was hier reichlich nach Fantasy klingt, ist tatsächlich Gegenstand heutiger Forschung, die Ganteför hier vorstellt.

Von den Visionen geht es schliesslich zu den Grenzen des Wissens in der Physik: Zunächst gibt Ganteför eine Übersicht über das heute etablierte, wenn auch nicht ganz problemfreie Standardmodell der Teilchenphysik, aus welchem sich die Fragen nach einer Weltformel, nach der Natur von Raum und Zeit und Teilchen als solchen bis hin zur Bedeutung des erst vor wenigen Jahren experimentell bestätigten Higgs-Feldes ergeben.

Neben den Teilchen gehören auch scheinbar unverrückbare Naturgesetze und -konstanten zu unserer heutigen physikalischen Welt. Warum die Naturgesetze so sind, wie sie sind, was die Werte der Naturgesetze bestimmt und warum in unserem Universum Leben möglich ist, sind heute noch weitgehend offene Fragen.

Auch das Universum selbst wirft noch unbeantwortete Fragen auf. Heute ist die Urknall-Theorie als Entstehungsgeschichte des Universums anerkannt, obwohl sie Fragen offen lässt: Warum gibt es im Universum keine Antimaterie? Expandierte das Universum am Anfang seines Daseins mit Überlichtgeschwindigkeit? Was war vor dem Urknall? Was ist dunkle Materie und woher kommt die dunkle Energie?

Das elfte und letzte Kapitel ist schliesslich eine Zusammenfassung des vorangehenden bunten Reigens von Visionen und offenen Fragen.

Mein Eindruck vom Buch

Gerd Ganteför bietet seinen Lesern einen spannenden und für Laien gut verständlichen Rundgang durch die Themen der Forschung von morgen: Da erwartet uns in Zukunft viel Aufregendes, das sich in Ganteförs überaus klarem und nüchternem Schreibstil sehr angenehm lesen lässt.

So vielfältig die diskutierten Fragen sind, so oberflächlich werden die einzelnen Forschungsgebiete im begrenzten Umfang des Buches auch dargestellt. Das wird besonders in den Kapiteln deutlich, welche Themen behandeln, die mir besonders vertraut sind: Dort sind mir wiederholt kleine inhaltliche Ungenauigkeiten ins Auge gefallen, wie das Aufzählen der Lichtgeschwindigkeit als Naturkonstante ohne zu erwähnen, dass Licht sich nur im Vakuum mit dieser Geschwindigkeit bewegt, oder die Behauptung, man sei heute noch nicht in der Lage, Energie aus Masse zu gewinnen (genau das ist die Grundlage der Energiegewinnung mittels Kernspaltung!).

Solche Ungenauigkeiten zu erwähnen mag als Korinthenkackerei angesehen werden, aber ich vermag nicht einzuschätzen, inwiefern sie auch in den Abschnitten auftauchen, die mir weniger vertraute Themen behandeln und dort womöglich zur Entstehung fehlerhafter Vorstellungen beitragen.

Wer sich für die beschriebenen Themengebiete näher interessiert, findet jedoch in den Literaturlisten am Ende jedes Kapitels reichlich vertiefendes Material zum Weiterlesen. Dabei kommen auch und vor allem die Netz-Nutzer unter den Lesern nicht zu kurz, denn erstaunlich viele Verweise führen zu Wikipedia und andere Wissens-Sammlungen (was in meinen Augen für die zunehmende Qualität der Inhalte solcher Portale spricht).

Darüber hinaus stellt Ganteför die behandelten Visionen und Möglichkeiten auffallend unkritisch dar. So findet man in seinem Buch keine tödlichen Designerviren, feindlichen Alien-Zivilisationen, ethischen Diskussionen über Tierversuche zur Wiederbelebung ausgestorbener Arten oder Nebenwirkungen von „Verbesserungen“ von Menschen.

Das entspricht der Zielsetzung, die der Autor gemäss Einleitung mit seinem Buch verfolgt: Nämlich in einer Zeit, in welcher Wissenschafts- und Fortschritts-Skeptiker vielerorts den Ton angeben, einen positiven Einblick in die Möglichkeiten, die uns die Forschung in Zukunft eröffnen kann, zu gewähren. Und diese Möglichkeiten sind gemäss Ganteför dafür geeignet, die grossen Probleme der Menschheit zu lösen.

Für eine sachliche Diskussion der Möglichkeiten und Anforderungen künftigen wissenschaftlichen Fortschritts an die Gesellschaft liefert das Buch nur eine Seite der Medaille. Wenn man die andere Seite durch den verbreiteten Wissenschafts-Skeptizismus als gegeben annimmt, liefert „Heute Science Fiction, morgen Realität“ ein wohltuendes, wenn nicht gar aufregendes Gegengewicht zu weit verbreitetem Pessimismus und vielfältiger Panikmache.

Eckdaten rund um das Buch

(*)

Textlink (Amazon): Gerd Ganteför: Heute Science Fiction, morgen Realität? – An den Grenzen des Wissens und darüber hinaus (*)
WILEY-VCH Verlag GmbH & Co. KGaA, 2016
Hardcover, 224 Seiten
ISBN: 978-3-527-33881-8

 

Fazit

Mit „Heute Science Fiction, morgen Realität?“ bietet Gerd Ganteför auch und gerade absoluten Wissenschafts-Laien einen spannenden und leicht verständlichen Einblick in die Möglichkeiten der Wissenschaft von morgen, welche ebenso vielfältig bunt sind wie das Cover des Buches. Doch dank ebendieser Themenvielfalt bin auch ich als „Wissenschafts-Profi“ bei der Lektüre hier und da ins Staunen gekommen.

Die dargestellten Visionen kritisch zu betrachten und ethische Gesichtspunkte abzuwägen bleibt dabei ganz dem Leser überlassen. Wer gerne unkritisch staunt und sich von spannenden Aussichten verzaubern lässt, wird in diesem Buch eine kurzweilige und letztlich auch ermutigende Lektüre finden.

Und was ist eure liebste Zukunfts-Vision?

Mit Spannendem und Wissenswertem über Blut kann man ganze Bücher oder Website füllen! Und da Blut rund um Halloween allgegenwärtig ist, widme ich diesem Wunderstoff den diesjährigen Gruselbeitrag.

Mehr Halloween-Themen gibt es hier:

Unerwartet gruselige Filme erwarten euch in Jaris Flimmerkiste

Christopher von Hirn mit Ei hat einen echten Geisterjäger interviewt

Der Herbst ist spürbar angekommen, und einmal mehr ist die Nacht verstrichen, in welcher die Welt der Geister der unseren besonders nahe sein soll: Die Nacht auf Allerheiligen, Samhain – oder auf gut amerikanisch: Halloween. So sind Geister und alles Schaurige dieser Tage Motto für Partys, Kostüme, Schaufensterdeko, zahllose Blogartikel und sogar das Fernsehprogramm. Dabei erfreut sich ein besonders gruseliges Detail grosser Beliebtheit: Blut. Ob als Leibspeise für Vampire oder raffiniertes „Accessoire“ für Zombie-Kostüme und schaurige Dekorationen – Blut und Blutiges sind nicht wegzudenken, wenn es um Halloween geht.

Dabei ist Blut doch eigentlich gar nicht gruselig – sondern eine der spannendsten und nützlichsten Chemikalien überhaupt! So trägt es die überaus positive Bezeichnung „Lebenssaft“ zu Recht, denn Blut ist eine Flüssigkeit, die atmen kann! Wie genau das funktioniert, und wie das Blut dank dieser Fähigkeit einen ganzen Körper mit Energie versorgen kann, erzählt diese Geschichte.

Und da unser Lebenssaft damit viel zu kostbar ist, um als Gegenstand von Experimenten oder gar als Halloween-Dekoration zu enden, gibt es zum Schluss noch einige Tipps zum oft unvermeidlichen Umgang mit Blut: Wie wird man nach einem blutigen Unfall die hartnäckigen roten Flecken auf Kleidung und Co. wieder los?

Warum Blut uns zum Gruseln bringt

Blut ist flüssig, rot und undurchsichtig – eine Suspension: ein Gemisch aus verschiedenen chemischen Substanzen, von welchen mindestens eine fest und eine flüssig ist – also eine Chemikalie wie tausend andere auch. Warum aber erschaudern die meisten Menschen gerade beim Anblick von Blut und werden im schlimmsten Fall sogar ohnmächtig?

Das ist ein Überbleibsel der evolutionären Entwicklung des Menschen: Tatsächlich sorgt Blut nämlich erst dann für Schrecken, wenn es vergossen wird. So lange es sich in den Blutgefässen im Körper befindet  – oder auch sicher verpackt in einer Ampulle oder einem Konservenbeutel, lässt es sich sehr einfach als das betrachten, was es ist: eine rote Flüssigkeit.

Sobald es aus Wunden vergossen wird, signalisiert es stattdessen „Hier ist etwas gefährliches, womöglich lebensfeindliches am Werk!“ Wer einstmals beim Anblick von vergossenem Blut oder einem verwundeten Körper schnellstmöglich Reissaus nahm, hatte bessere Chancen auf ein längeres Leben und die Weitergabe seines Erbguts als jene, die in Seelenruhe abwarteten, bis der verantwortliche lebensfeindliche Umstand sie um ihr eigenes Blut erleichterte.

Spätestens seit gut 70 Jahren ist das in vielen Teilen unserer Welt anders. Blut bekommt man darin in der Regel nur noch an Unfallschauplätzen, in Operationssälen, in Fernsehkrimis oder Gruselfilmen zu Gesicht. Und bei diesen Gelegenheiten droht normalerweise keinem Beobachtenden Gefahr.

So können wir getrost unseren überflüssig gewordenen Urinstinkt überwinden und das menschliche Blut in allen Einzelheiten betrachten.

Woraus besteht das menschliche Blut?

Blut ist eine Suspension, also ein Stoffgemisch aus flüssigen und festen Bestandteilen. Ein Mensch enthält etwa 70 bis 80 ml dieses Gemischs, das normalerweise sicher in den Blutgefässen eingeschlossen ist, pro kg Körpergewicht. Ich habe damit rund 5,5l Blut.

Und wieviel Blut hast du?

Das Blut eines erwachsenen Menschen besteht in der Regel zu rund 44% aus frei beweglichen Zellen, die mit Wasser vermischt durch unsere Gefässe strömen. Dieser Anteil der Zellen am Blut wird „Hämatokrit“ („Hkt“) genannt und von Ärzten oft als Anteil an einem Liter Blut angegeben. Ein üblicher Hämatokrit beträgt also 0,44 Liter Zellen in einem Liter Blut. Mit steigendem Anteil an Zellen wird das Blut dickflüssiger, sodass zunehmend dazu neigt, die engen Blutgefässe im Körper zu verstopfen. Ein Hämatokrit von 0,6 und höher gilt deshalb als ernsthaft gesundheitsgefährdend. Ein solch hoher Anteil an Zellen im Blut kann die Folge von Flüssigkeitsverlust oder der Verabreichung von Blutzellen-Konzentraten per Infusion, beispielsweise zur Leistungssteigerung, sein und gehört damit zu den gefährlichen Nebenwirkungen verschiedener Doping-Methoden.

Blut enthält eine Reihe verschiedener Sorten von Zellen:

Blut-Zellen unter dem Elektronenmikroskop

Unter dem Elektronenmikroskop: links: rote Blutzelle, Mitte: aktiviertes Blutplättchen, rechts: weisse Blutzelle

Rote Blutzellen (auch: Rote Blutkörperchen, Erythrozyten):

Die roten Zellen machen den Löwenanteil der Zellen im Blut aus: Enthält das Blut 440 Milliliter Zellen, entfallen rund 430 Milliliter davon auf die roten Zellen, während die übrigen Zellen zusammen nur 10 Milliliter ausmachen! Deshalb kann der Hämatokrit näherungsweise als Anteil der roten Zellen am Gesamtblutvolumen angesehen werden.

Die roten Blutzellen lassen sich unter dem Lichtmikroskop  beobachten. Ihr Aussehen erinnert an winzige Gummiboote mit einem Durchmesser von etwa 7,5 Mikrometern. Anders als andere Zellen enthalten rote Blutzellen von Säugetieren keinen Zellkern und entbehren ausserdem Mitochondrien, Ribosomen und einige andere Organellen. So haben sie mehr Platz für ihr wichtigstes Werkzeug: Hämoglobin – das Protein, welches ihnen die rote Farbe verleiht und den Transport von Sauerstoff übernimmt. Würde man roten Blutzellen alles Wasser enziehen, dann würde das Hämoglobin rund 90% des Gewichts der verbleibenden Stoffe stellen. Rote Blutzellen sind also ganz auf ihren überaus wichtigen Job spezialisiert: Sie transportieren Sauerstoff.

Weisse Blutzellen (auch: Weisse Blutkörperchen, Leukozyten):

Die weissen Blutzellen sind als Teil des Immunsystems für die Abwehr von Bedrohungen für „ihren“ Körper zuständig. Wie in einer richtigen Polizeitruppe gibt es unter ihnen verschiedene Spezialisten mit an verschiedene Aufgaben angepasster Gestalt. Sie alle unterscheiden sich von den roten Zellen darin, dass sie einen Zellkern und eine Komplettausstattung zur Energieerzeugung haben. Die Energie ermöglicht den weissen Zellen zum Beispiel die Herstellung von verschiedenen „Kampfstoffen“ oder die eigenständige Fortbewegung, auch aus den Blutgefässen hinaus!

Zu den verschiedenen Spezialisten in der Körper-Polizeitruppe zählen:

Fresszellen: Sind darauf ausgelegt, Fremdstoffe und gefährliche Keime aufzunehmen (zu „phagozytieren“) und zu verdauen. In den Blutgefässen selbst findet man vornehmlich Monozyten (Vorläuferzellen, die zu Makrophagen, den eigentlichen Fresszellen ausreifen können) und neutrophile Granulozyten.

Giftschleudern: Diese Zellen können „Ausdünstungen“, also bestimmte Moleküle, die von Keimen oder Parasiten abgesondert werden, „riechen“, einer solchen Spur zu ihrem Erzeuger folgen und so gezielt in dessen Nähe Giftstoffe ausschütten, die dem Angreifer das Leben schwer machen. Dass diese Giftstoffe jedoch auch für den eigenen Körper unangenehm werden können, merken wir, wenn wir es ihretwegen mit einer Entzündung oder Allergie zu tun bekommen. Zu den Giftschleudern zählen eosinophile und basophile Granulozyten.

Aufklärungsdienst: Einige Zellen können regelrecht zu wandelnden Litfasssäulen werden. Wenn solche Zellen auf Eindringlinge oder eine entartete Körperzelle treffen, können sie „feindliche“ Merkmale (sogenannte Antigene) ihrer Oberfläche kopieren und auf der eigenen Aussenfläche zur Schau stellen, sodass andere weisse Zellen davon ablesen können, was sie zu bekämpfen haben. Zu diesen antigenpräsentierenden Zellen gehören die Monozyten, dendritische Zellen und B-Zellen.

Spezialagenten: Verschiedene Zellen können gezielt Keime oder entartete Zellen ausschalten. Dazu zählen die B-Lymphozyten, die entweder zu Plasmazellen ausreifen und Antikörper gegen eine bestimmte Bedrohung produzieren oder sich als langlebige B-Gedächtniszellen bestimmte Antigene über sehr lange Zeit merken können. Letztere sorgen dafür, dass wir eine Kinderkrankheit kein zweites Mal bekommen oder nach einer Impfung lange Zeit davor geschützt sind. Eine andere Gruppe bilden die T-Zellen, die als T-Killerzellen entartete Körperzellen (Krebszellen oder von Viren gekaperte Zellen) direkt angreifen und zum Absterben bringen oder als T-Helferzellen Antigene „lesen“ und den Einsatz von Plasma- und Killerzellen koordinieren können. Das Sondereinsatzkommando unter den Spezialagenten bilden schliesslich die „natürlichen“ Killerzellen, die darauf ausgelegt sind, die Bemühungen entarteter Zellen, sich vor den T-Killerzellen zu tarnen, zu unterwandern und auch die durchtriebensten Feinde zum Absterben zu bringen.

Blutplättchen (auch: Thrombozyten):

Blutplättchen sind kleine, normalerweise scheibchenförmige Zellen ohne Zellkern – genauer gesagt handelt es sich dabei um Zell-Bruchstücke, die von grösseren Zellen abgeschnürt werden, um dann mit dem restlichen Blut durch die Gefässe zu strömen. Blutplättchen kommen zum Einsatz, wenn ein Blutgefäss verletzt wird. Dann werden sie im Zuge der Blutgerinnung aktiviert und bilden Tentakel aus, mit welchen an Gewebeoberflächen und einander haften und die Verletzung schliessen können. Dabei setzen sie ihrerseits Stoffe frei, die die Blutgerinnung fördern.

Blutplasma:

Die verbleibenden rund 56% des Blutes bildet das Blutplasma, also grösstenteils (zu rund 90%) Wasser. Darin sind viele verschiedene Stoffe gelöst: Proteine, Ionen von Salzen und kleine Moleküle, wie Nährstoffe (Zucker, Fettbestandteile, Vitamine), Hormone, Gase und Stoffwechsel- bzw. Abfallprodukte wie Harnstoff oder Harnsäure.

Im Blutplasma können all diese Stoffe im Körper von A nach B transportiert werden, ob zur Ernährung von Zellen, zur Entsorgung durch Nieren oder Leber oder zur Kommunikation zwischen Zellen und Geweben. Darüber hinaus kann Körperwärme durch das Blut abtransportiert oder im Körper umverteilt werden, ein System aus Proteinen im Blutlasma hält die Gefässe instand (Blutgerinnung), während andere Proteine an der Immunabwehr beteiligt sind. Da all diese Vorgänge sehr empfindlich für Schwankungen des pH-Werts sind, enthält das Blutplasma einige Substanzen, die als „Puffer“ dafür sorgen, dass der pH-Wert des Blutes stets bei 7,4 liegt.

Entfernt man alle Proteine des Blutgerinnungssystems aus dem Blutplasma, wird der verbleibende Rest übrigens „Blutserum“ genannt.

Ein Farbstoff als Lastwagen: Hämoglobin und der Sauerstofftransport

Besonders auffällig ist Blut durch seine kräftig rote Farbe. Die rührt vom Hauptbestandteil der roten Blutzellen her: Dem Hämoglobin. Das ist ein Protein, das aus 4 zusammengeknäuelten Ketten zu je 141 Aminosäuren besteht. Diese Aminosäure-Ketten habe keine besondere Farbe. In jede Teilkette des Hämoglobins ist jedoch ein besonderes Molekül eingebettet: Ein Häm. Das Häm-Molekül ist ein Ring aus miteinander verknüpften Atomen, in dessen Mitte ein Eisen-, genauer gesagt ein Fe2+-Ion „eingeklemmt“ ist.

Dieses Fe2+-Ion wird von den vier Stickstoff-Atomen an der Innenseite des Rings „festgehalten“. Dazu steuern die Stickstoff-Atome jeweils ein ganzes Elektronenpaar zu einer Bindung zum Eisen bei. Sie „borgen“ dem Eisen also Elektronen, um dessen Aussenschale aufzufüllen (bei einer gewöhnlichen Elektronenpaarbindung steuern hingegen beide beteiligten Atome je ein Elektron zur Bindung bei).

Eine solche geborgte Bindung nennen die Chemiker „koordinative Bindung“. Ein Teilchen, das solche Bindungen enthält ist ein „Komplex“ bzw. eine „Koordinationsverbindung“. Die Komplexchemie – die Chemie solcher Verbindungen, erscheint womöglich deshalb komplex, weil die Bildung von koordinativen Bindungen nicht der einfachen Edelgas-Regel unterliegt, sondern eigenen Regeln folgt, welche mitunter mehr als 8 Elektronen in der Aussenschale bestimmter Atome erlauben.

Der rote Blut-Farbstoff: Strukturformel des HämDas in der Abbildung gezeigte Häm b ist dunkelrot. Innerhalb des Kohlenstoff-Rings wechseln sich Einzel- und Doppelbindungen ab. Das bedeutet, dass ein Teil der an den Bindungen beteiligten Elektronen sich relativ frei bewegen und dazu einfallende Lichtquanten „schlucken“ können, sodass das menschliche Auge das verbleibende Licht als farbig wahrnimmt. (Mehr zu solchen Farbstoffen habe ich Ostern erzählt und mehr zur Farbwahrnehmung in dieser Geschichte über das Licht). Ein Chemiker, der das weiss, kann an der Strukturformels des Häms ablesen, dass dieses Molekül wahrscheinlich farbig ist. Welche Farbe es hat, lässt sich allerdings nicht so ohne weiteres sagen. Dazu muss man sich den Stoff, der aus den Molekülen besteht, schon ansehen.

Die besonderen Regeln der Komplexchemie besagen, dass Eisen-Ionen insgesamt 6 Bindungen ausleihen können. So kann der Rest einer Aminosäure Histidin aus der Aminosäuren-Kette dem Eisen ein fünftes Elektronenpaar leihen. Dieses formt eine Bindung vom Eisen zum Histidin nach unten und bindet so den Ring samt eingeklemmtem Eisen-Ion an das Protein.

Der sechste Platz für ein geliehenes Elektronenpaar (oben) ist frei und kann eine weiteres Molekül als Last aufnehmen – idealerweise ein Sauerstoff-Molekül O2. Denn auch ein Sauerstoff-Molekül hat Elektronenpaare zu verleihen und kann so mit einem Ende an das Eisen im Häm binden. Dabei werden die Elektronen in platzsparender Weise umsortiert: Das Eisen-Ion wird somit kleiner und rutscht vollständig in die Ringebene („unbeladen“ hängt es etwas darunter). Das hintere Ende des O2-Moleküls bildet eine „Wasserstoff-Brücke“ mit einem anderen Histidin-Rest, sodass das O2-Molekül sicher am Häm angegurtet ist.

Die Umsortierung betrifft nicht nur die Elektronenschalen des Eisens, sondern auch das übrige Bindungssystem, innerhalb dessen sich Elektronen frei bewegen können. So schlucken diese Elektronen nach der Umsortierung Lichtquanten mit anderen Wellenlängen. Das beladene Häm hat damit eine andere Farbe: Häm mit gebundenem Sauerstoff ist leuchtend rot!

Mit einem elektronischen „Auge“, das Lichtquanten einer bestimmten Farbe erkennt und zählt, einem sogenannten Photometer, kann so gemessen werden, wieviel Sauerstoff in einer Blutprobe gebunden ist: Je mehr Häms im Blut mit Sauerstoff beladen sind, desto hellroter erscheint das Blut und desto mehr „hellrote“ Lichtquanten können gezählt werden. Das funktioniert sogar durch die Haut: Auf der Intensivstation wird einem Patienten ein kleiner Sensor an den Finger geclippt (dann heisst das Gerät „Pulsoxymeter“, da es auch den Puls zählt) und sendet seine Messwerte an einen Monitor, der daraufhin die „Sauerstoffsättigung“ anzeigt.

Bei einem gesunden Menschen sind nach dem Durchgang durch die Lunge, also im Blut in seinen Arterien, über 96% der Häms mit Sauerstoff besetzt: Die Sauerstoffsättigung beträgt mindestens 96%.

Und wie funktioniert das Be- und Entladen des Häms?

Die Festigkeit der Bindungen zwischen Sauerstoff- und ihren Hämoglobin-Transportern hängt von verschiedenen Faktoren ab, wie zum Beispiel dem pH-Wert, der Menge des in der Umgebung vorhandenen Kohlenstoffdioxids, der Temperatur und weiteren. Dabei ist das Hämoglobin – aus gutem Grund – so geschaffen, dass all diese Faktoren in der Lunge das Angurten von Sauerstoff-Molekülen an Hämoglobin begünstigen.

Wenn die so beladenen roten Blutzellen auf ihrem folgenden Weg in Bereiche des Körpers gelangen, in welchen gearbeitet wird  – zum Beispiel in Muskeln – treffen sie dort auf „Abfallprodukte“, die bei dieser Arbeit entstehen, wie H+-Ionen (viele H+-Ionen bedeuten einen niedrigen pH-Wert!), Kohlenstoffdioxid und Wärme. Diese Faktoren lockern die „Gurte“, welche die Sauerstoff-Moleküle am Hämoglobin halten, sodass die roten Blutzellen genau dort entladen werden können, wo Sauerstoff gebraucht wird.

Kohlenstoffdioxid wird übrigens nicht an Häm gebunden, sondern im Wasser des Blutplasmas gelöst und so in die Lungen geschwemmt, wo es in die Atemluft austritt. Zwischen gasförmigen und gelöstem Kohlenstoffdioxid besteht dabei stets ein chemisches Gleichgewicht, das unter verschiedenen Bedingungen eine unterschiedliche Lage haben kann. Wie genau das den Ein- und Austritt des Kohlenstoffdioxids in die bzw. Aus der wässrigen Lösung ermöglicht, erklärt Monsieur Le Châtelier euch am Flughafen.

Sauerstoff O2 ist dennoch nicht das einzige Molekül, das an eine Häm-Gruppe binden kann. So kann sich das Häm-Eisen seine Elektronen auch von anderen, ähnlichen Molekülen leihen, zum Beispiel von Kohlenstoffmonoxid, CO. Dieses Molekül bindet jedoch 200 mal stärker an Hämoglobin als Sauerstoff – und lässt sich folglich nicht mehr so einfach davon lösen! Einmal mit CO besetztes Hämoglobin kann also keinen Sauerstoff mehr transportieren, was Kohlenstoffmonoxid sehr giftig macht. Bei einer akuten CO-Vergiftung kann allenfalls in einer Druckkammer so viel Sauerstoff auf das Blut in den Lungen des Vergifteten losgelassen werden, dass die Sauerstoffmoleküle das CO letztlich doch von den Häms schwemmen können.

Bei starken Rauchern können übrigens dauerhaft bis 10% der Häms mit Kohlenstoffmonoxid blockiert sein, sodass ihr Blut bis zu 10% weniger Sauerstoff in den Körper transportieren kann als bei einem gesunden Menschen! Wem es also an körperlicher Fitness mangelt, der möge das Rauchen lassen, sodass sein Körper binnen der nächsten 100 Tage alle von CO gekaperten roten Blutzellen durch neue ersetzen kann.

Hands on: Wie man Blutflecken entfernen kann

Blut ist – so interessant es als Chemikalie erscheint – nicht wirklich zum Experimentieren geeignet. Zum Einen ist es dafür viel zu schade – hat es doch in unseren Blutgefässen einen so wichtigen Job zu verrichten. Zum Anderen treiben sich in unserem Blut neben den vorgestellten Bestandteilen auch verschiedene ungeladene Gäste herum: Bakterien, Viren oder gar winzige Parasiten, die mitunter Krankheiten auslösen können. Und darunter sind manche, die erst durch den Kontakt mit fremdem Blut von einem Menschen auf den anderen übertragen werden können. Daher tun wir gut daran, unser Blut in unseren Adern zu belassen.

Manchmal fordert unser Körper uns jedoch geradezu dazu heraus, uns mit unserem Blut zu beschäftigen: Ob wir uns beim Umgang mit Küchenmessern als Tolpatsch erweisen, unter spontanem Nasenbluten leiden oder einfach fruchtbare Frauen sind – nur zu schnell gerät ein Blutfleck auf Kleidung oder andere Textilien. Und dann ist guter Rat teuer, wenn es darum geht ihn wieder loszuwerden.

Deshalb gibt es hier einige Tipps zur sauberen Entfernung der lästigen roten Flecken. Und nachdem ihr spätestens jetzt die Zusammensetzung des Blutes kennt, kann ich auch erklären, warum diese Tipps funktionieren:

Frische Blutflecken zügig mit kaltem Wasser ausspülen:

Blut ist eine Suspension von Zellen in einer wässrigen Lösung. Dementsprechend lässt sich frisches, feuchtes Blut gut mit Wasser mischen und frische Blutflecken sich folglich mit Wasser ausspülen. Dabei solltet ihr in jedem Falls kaltes (d.h. höchstens raumwarmes) Wasser benutzen, da Protein-Moleküle – auch jene im Blutplasma – spätestens ab 42°C ihre Form verlieren und zu einem schwerlöslichen Aminosäurekettengewirr zusammenpappen – oder besser „gerinnen“. Das hat übrigens nichts mit der Blutgerinnung zu tun, die von funktionsfähigen Proteinen ausgeht und auch bei niedrigeren Temperaturen stattfindet, aber zu einem ähnlichen Ergebnis führt. Frische, noch nicht getrocknete bzw. geronnene Blutflecken wird man deshalb am einfachsten wieder los.

Getrocknete, schlimmstenfalls durch Wärme geronnen Blutflecken entfernen:

Dazu kann die Waschkraft von Wasser massgeblich unterstützt werden.

Stärke-Moleküle sind spiralförmige Ketten aus kleineren Zucker-Molekülen, die wie ein Schwamm wirken und Blutbestandteile förmlich „aufsaugen“ können. So lässt sich erklären, dass Stärkemehl, wenn man frische oder angefeuchtete Blutflecken damit bedeckt, die rote Farbe aufnehmen kann und sich dann abtragen lässt.

Auch Gasbläschen, zum Beispiel aus Backpulver oder Brausetabletten freigesetztes Kohlenstoffdioxid CO2, können beim Ausperlen Blutbestandteile aus Textilgewebe lösen – ganz klassisch auf mechanische Art und Weise. Damit erkläre ich mir auch die lösende Wirkung von Aspirin-Tabletten auf Blutflecken. Denn mit der gerinnungshemmenden Wirkung ihres Wirkstoffes Acetylsalicylsäure (ASS) kann das nämlich – ausser vielleicht bei sehr frischen Blutflecken – nichts zu tun haben. ASS blockiert nämlich den „Ein-„Schalter noch nicht gebrauchter Blutplättchen und macht sie damit für die Blutgerinnung unbrauchbar – bevor diese überhaupt begonnen hat!

Auch die Superwaschkraft von Tensiden kann dabei helfen, wasserunlösliche Blutbestandteile wie Fette und geronnene Proteine aus Textilien zu lösen: Gallseife erweist sich daher als wirksames Mittel zur Entfernung von Blutflecken.

Und wem das nicht reicht, der kann geronnene Proteine darüber hinaus mittels chemischer Reaktionen zerlegen. Unglücklicherweise zerlegen viele Reaktionen Textilfasern ebenso gut, sodass bei diesen Methoden besondere Vorsicht geboten ist:

Eine saure (durch Zitronensäure oder Essig erzeugte) oder alkalische (zum Beispiel durch Ammoniaklösung geschaffene) Umgebung kann die Zersetzung von Proteinen und anderen Kettenmolekülen fördern.

Wasserstoffperoxid, H2O2, geht mit vielen anderen Stoffen Redox-Reaktionen ein und kann beispielsweise Farbstoffmoleküle zerlegen, weshalb es als Bleichmittel beliebt ist – auch wenn es um Blutflecken geht.

Die Natur hat überdies verschiedene Proteine geschaffen, die andere Proteine oder sonstige Kettenmoleküle in Stücke schneiden können. Solche Enzyme sind heutzutage in vielen Waschmitteln oder Fleckenentfernern enthalten. Auch dank ihnen bekomme ich auch getrocknete Blutflecken mit einem Vollwaschmittel sowohl bei 30°C als auch bei 60°C in der Waschmaschine gut entfernt.

Und was empfindest du beim Anblick von Blut? Hast du vielleicht eine ganz eigene „blutige“ Geschichte erlebt? Welches ist deine persönliche Waffe gegen Blutflecken auf Textilien?

Vor etwa einem Monat fand ich einen skurril anmutende Post in meinem Facebook-Feed: Die Tierschutzorganisation PETA wurde für die Auszeichnung eines veganen Hundefutters auf Soja-Basis als „tierfreundlichste Hundenahrung“ heftig kritisiert. Veganes Hundefutter? Ist denn das die (bzw. eine) Möglichkeit?

Wie bei vielen Themen aus den Bereichen Ernährung, Gesundheit und Tierschutz üblich ging es auch in den Kommentaren zu jenem Beitrag heftig zu und her – wobei die Kommentierenden zu grossen Teilen in die Kritik an PETA mit einstimmten und die Ansicht teilen, dass vegane Ernährung für den Hund vollkommen widernatürlich sei.

Als bekennende Alles-Esserin beschlich mich indessen beim Lesen der Kommentare Ratlosigkeit: Was wäre denn die natürliche Nahrung für einen Haushund? Und was braucht so ein Hund eigentlich für ein gesundes Leben? Kann vegane Hundenahrung das alles liefern? Und wie sieht das bei Katzen aus?

 

Was ist Veganismus?

Veganismus ist eine aus dem Vegetarismus hervorgegangene Einstellung sowie Lebens- und Ernährungsweise. Vegan lebende Menschen meiden entweder zumindest alle Nahrungsmittel tierischen Ursprungs oder aber die Nutzung von Tieren und tierischen Produkten insgesamt.

(Definition aus https://de.wikipedia.org/wiki/Veganismus)

Demnach gibt es mindestens zwei „Grade“ der veganen Lebensweise: Die vegane – also tierproduktfreie – Ernährung, und das Meiden der Nutzung von Tieren und tierischen Produkten in vielen bzw. allen Lebensbereichen. Dabei lässt allein der Bedarf nach veganen Futtermitteln vermuten, dass es bei der veganen Einstellung über die Ernährung hinaus verschiedene Abstufungen gibt. Denn es ist gewiss nicht von der Hand zu weisen, dass die Haltung von Haustieren letztlich auch unter die „Nutzung von Tieren“ fällt.

Hier möchte ich jedoch bei der veganen Ernährung bleiben. Ob und wie diese funktioniert, unterscheidet sich bei Mensch und Hund weniger, als manche denken mögen. Deshalb machen hier die menschlichen Nahrungsbedürfnisse und Ernährungsmöglichkeiten, welche einem verantwortungsvollen Veganer bestens vertraut sein sollten, den Anfang – und können sodann mit den Bedürfnissen unserer vierbeinigen Hausgenossen verglichen werden.

 

Was ist die natürliche Nahrung des Menschen?

Der Mensch unterscheidet sich von anderen Tieren in seinem aussergewöhnlich grossen Gehirn, das zu atemberaubenden Denkleistungen fähig ist, dabei aber Unmengen von Energie frisst, welche fortlaufend vom Rest des Körpers bereitgestellt werden muss. So ist der Mensch auf eine regelmässige Zufuhr energiereicher Nahrung angewiesen, und zwar überall, wo ihn seine Wanderlust und sein Streben nach Verbreitung hinverschlägt.

Ein Wesen mit hohem Energiebedarf und Verbreitungswillen tut also gut daran, in möglichst jeder Umgebung etwas – besser etwas mehr – zu futtern zu finden, wobei ihm sein ausgeprägtes Denkvermögen eine wertvolle Hilfe sein kann. Damit lässt sich allemal erklären, dass der Mensch zum Einen praktisch die ganze Erde besiedeln konnte, und dass zum Anderen die heute verbliebenen Volksstämme mit einer „urtümlichen“ Lebensweise massiv unterschiedliche, aber ihrem Lebensraum bestens angepasste Speisepläne haben. Das Spektrum reicht von teilweise vegetarisch lebenden afrikanischen Stämmen bis zu den praktisch ausschliesslich Fleisch und Fisch essenden Inuit der Arktis.

Kurzum: Der Mensch ist einer der am wenigsten spezialisierten und damit anpassungsfähigsten Allesfresser unseres Planeten. Und das versetzt ihn auch in die Lage, die verschiedensten Ernährungsphilosophien zu ersinnen und zu leben – die in den heutigen Industrienationen nicht länger an seinen Lebensraum gebunden sind.

 

Welche Stoffe in tierischen Produkten braucht der Mensch zum Leben?

Dass sich auch auf dem Speiseplan von Völkern mit Zugang zu pflanzlicher und tierischer Nahrung letztere stets mit einem erheblichen Anteil findet, deutet darauf hin, dass tierische Nahrung dem Menschen auch dann Nutzen bringt, wenn er nicht „aus Mangel an Alternativen“ darauf zurückgreifen muss. Aber welche Nährstoffe machen Fleisch und andere tierische Produkte zu für uns wertvollen Nahrungsmitteln?

Calcium: Milch und Milchprodukte enthalten reichlich Calcium-Ionen (Ca2+). Bezogen auf den menschlichen Körper ist Calcium ein sogenanntes Mengenelement, d.h. ein beträchtlicher Anteil – ca. 1 bis 1,1 kg eines erwachsenen Menschen – des Körpergewichts entfallen auf Calcium. Calciumsalze wie Hydroxylapatit sind massgebliche, harte Bestandteile von Knochen und Zähnen, wie auch mein Zahn 16 zu berichten weiss. Für die Aufnahme von Calcium und dessen Einbau in Knochen benötigt der Körper das Vitamin D3, welches bei veganer Ernährung ebenfalls besonderer Aufmerksamkeit bedarf. Calcium kommt auch in vielen Pflanzen vor. Diese enthalten jedoch oftmals Säuren wie Oxal-(Rhabarber!) und Phytinsäure(Getreide, Hülsenfrüchte, Erdnüsse!) enthalten, die mit Calciumionen sehr stabile Salze bilden. Diese Salze lassen sich weder bei der Verdauung noch im weiteren Stoffwechsel in nennenswerter Menge zerlegen. Deshalb kann der Körper pflanzliches Calcium oft nur zu kleinen Teilen nutzen – die „Bioverfügbarkeit“ des pflanzlichen Calciums ist vermindert.

Eisen: Eisen zählt zu den lebensnotwendigen Spurenelementen. Es kommt im menschlichen Körper in Form von Fe2+– und Fe3+-Ionen, die Bestandteile verschiedener Proteine sind, vor. Am bekanntesten sind wohl die Fe2+-Ionen, die im Zentrum der Häm-Gruppe des roten Blutfarbstoffs Sauerstoff transportieren. Darüber hinaus sind die beiden Eisen-Ionensorten, die sich relativ leicht ineinander umwandeln lassen, in Enzymen für die Übertragung von Elektronen von einem Teilchen zum anderen, also für Redox-Prozesse, zuständig. Blutwurst und Leber enthalten viel Eisen als Fe2+ und Fe3+, ebenso rotes Fleisch. Pflanzen enthalten ausschliesslich Fe3+, welches mehr noch als Fe2+ mit verschiedenen Pflanzenbestandteilen, insbesondere mit Phytinsäure, sehr stabile Salze bildet und damit weniger bioverfügbar ist als tierisches Eisen.

Jod: Ist vor allem ein unverzichtbarer Bestandteil von Schilddrüsenhormonen. Dabei kommt dieses Element in unserer Nahrung vergleichsweise selten vor. Jodid-Ionen (I) sind ein Bestandteil von Meerwasser und daher in Meeresfrüchten und Fisch zu finden. Dennoch lässt die Jodversorgung durch unsere Nahrung generell zu wünschen übrig (auch bei Mischköstlern, bei Veganern aber noch mehr), sodass Speisesalz und auch Tierfuttermittel häufig mit Jod angereichert werden.

Kreatin:Kreatin und Kreatinphosphat: bei veganer Ernährung nur als Lebensmittel- oder Futterzusatz zu haben

Kreatin st eine stickstoffhaltige organische Verbindung, die als Kreatinphosphat für die Regeneration des „entladenen“ Energieträgermoleküls ADP zu ATP, der „geladenen“ Form zuständig ist. ( Die „Ladung“ besteht dabei in der Phosphoryl-(-PO32-) gruppe, die vom Kreatinphosphat ab- und an ein ADP-Molekül angehängt wird. Kreatin dient also der Energieaufbereitung zur Muskelarbeit und für Hirn- und Nervenfunktionen. Kreatin kann vom Körper selbst synthetisiert werden, wenn passende Aminosäuren als Bausteine, Vitamin B12 und Folsäure verfügbar sind. Fertiges Kreatin (und Aminosäuren) finden sich reichlich in (frischem) Fleisch und Fisch, also in Muskelmasse. Milch enthält weniger Kreatin, in Pflanzen findet es sich allenfalls in Spuren.

Langkettige Omega-3- bzw. n-3-Fettsäuren: Sind Fettsäuren, die mehrere C=C-Doppelbindungen enthalten (und damit „ungesättigt“ sind), wobei die erste dieser Doppelbindungen 3 Kohlenstoff-Atome vom „Schwanzende“ entfernt(den allgemeinen Aufbau von Fettsäuren habe ich in der Geschichte über Tenside beschrieben), die übrigen näher am „Kopf“ zu finden sind. Omega-3-Fettsäuren werden zahlreiche erhaltende Wirkungen auf das Herz-Kreislaufsystem (Blutdruck, Blutfettwerde, Entzündungsmediation, Gefässzustand…) zugeschrieben. Sie finden sich vornehmlich in Fischfetten – Pflanzen, ausser Algen, enthalten jedoch nur alpha-Linolensäure (eine Fettsäure mit 18 Kohlenstoff-Atomen und 3 Doppelbindungen). Der Körper kann daraus auch Eicosanpentaensäure (EPA, 20 C-atome und 5 Doppelbindungen) und Docosahexaensäure (DHA, 22 C-Atome und 6 Doppelbindungen) herstellen, braucht dazu aber Enzyme, die auch mit dem Omega-6-Fettsäurestoffwechsel beschäftigt sind, sowie die Vitamine B und C und die Spurenelemente Magnesium und Zink. Mit anderen Worten: Die Verlängerung der alpha-Linolensäure zu EPA und DHA ist für den Körper grosser Aufwand und hängt von der Verfügbarkeit einer ganzen Reihe von Hilfsmitteln ab.

Vitamin B12 (Cobalamin): Cobalamin oder Vitamin B12 : muss zuführen oder -füttern, wer sich vegan ernährt bzw. Veganes füttertIst als Coenzym B12 an der Herstellung der Purinbasen Adenin und Guanin beteiligt, die als Bausteine „A“ und „G“ für den Aufbau von DNA- und RNA-Strängen benötigt werden. Da besonders Zellen mit hoher Teilungsrate beim ständigen Kopieren ihres Erbguts laufend neue DNA aufbauen müssen, bekommen solche, wie die regelmässig nachgebildeten Blutzellen, einen B12-Mangel am ehesten zu spüren: Es kommt zu Anämien (Blutarmut bzw. -veränderungen) und darüber hinaus zu Nervenschäden. Vitamin B12 gibt es praktisch ausschliesslich in tierischen Nahrungsmitteln. Eine gute Folsäureversorgung, die mit veganer Nahrung einfach zu bewerkstelligen ist, kann einer Anämie vorbeugen und so einen B12-Mangel kaschieren, verhindert aber die Nervenschäden nicht!

Vitamin D (Calciferol): Kann der Körper selbst herstellen – wenn er genug Sonnenlicht bekommt. Zusätzliche Quellen sind tierische Produkte, allen voran Lebertran und Salzwasserfisch. Vitamin D3 (Cholecalciferol) ist für die Calciumaufnahme (s. dort) und damit für den Knochenbau notwendig.

Zink: Ist ein essenzielles Spurenelement, das im Körper in Form von -Ionen vorliegt. Dort hat es als Bestandteil von Enzymen vielfältige Aufgaben, zum Beispiel bei der Übersetzung der Erbinformation in Protein-Baupläne und bei der Unterstützung des Immunsystems (durch Bremsen von überschiessenden Immun-Reaktionen, was Zink für Wundsalben so interessant macht). Zink ist in pflanzlicher Nahrung vorhanden, ist aber wie die Eisen- und Calciumionen oft in sehr stabilen Salzen gebunden und damit weniger bioverfügbar.

Vitamin B2 (Riboflavin): Ist eine Vorstufe von Coenzymen, also „Assistenten“-Molekülen, die von bestimmten Enzymen für die Erfüllung ihrer Aufgabe benötigt werden. Mit Riboflavin-Abkömmlingen arbeiten viele Enzyme, die für Redoxprozesse, also Elektronenübertragungen zuständig sind, welche vielerorts im Stoffwechsel stattfinden. Riboflavin findet sich unter anderem in Milch, Fisch, Fleisch, und Eiern.

 

Wie kann man diese wichtigen Nährstoffe aus Tierprodukten ersetzen?

Calcium: Kann zum Beispiel in calciumreichem Mineralwasser, Grünkohl, Brokkoli, Sesam, Haselnüssen, Sojabohnen oder Tofu gezielt zugeführt werden. Ein erhöhter Calciumbedarf kann zudem mit Nahrungsergänzungsmitteln gedeckt werden.

Eisen: Fe3+-Ionen kommen zum Beispiel in Hülsenfrüchten (schlechte Bioverfügbarkeit wegen enthaltener Phytinsäure!) oder Vollkornbrot vor. Eine Hausärztin empfahl mir zudem einmal, meines tendenziell niedrigen Eisenspiegels auch rote Früchte, im Speziellen Erdbeeren (es war gerade Frühling). Verschiedene Lebensmittel, zum Beispiel Kaffee oder schwarzer Tee, wirken zudem einer effektiven Eisenaufnahme entgegen. Für eine zusätzliche Eisenzufuhr gibt es zudem Nahrungsergänzungsmittel. Da jedoch auch deren Bioverfügbarkeit begrenzt ist, empfiehlt mein Hausarzt bei Eisenmangel eine (einzelne!) Infusion zum Wiederauffüllen der körpereigenen Eisenspeicher.

Jod: Kann mit angereicherten Lebensmitteln wie jodiertem Speisesalz oder Nahrungsergänzungsmitteln zugeführt werden.

Kreatin: Wird in zahlreichen Nahrungsergänzungsmitteln vermarktet, die sich auch in der Fitnessbranche grosser Beliebtheit erfreuen.

Langkettige Omega-3-Fettsäuren: Alpha-Linolensäure kommt in zahlreichen Pflanzenölen, zum Beispiel dem namensgebenden Leinöl, vor, welche auch in Kapselform als Nahrungsergänzungsmittel erhältlich sind. Die Weiterverarbeitung zu EPA und DHA kann durch gute Versorgung mit den dazu nötigen Hilfsmitteln unterstützt werden.

Vitamin B12 (Cobalamin): Verschiedene B12-Varianten sind als Nahrungsergänzungsmittel erhältlich. Die recht komplexen Moleküle werden von kultivierten Bakterien produziert, welche – wie ich festgestellt habe – als vegan gelten, so lange sie vegan (d.h. auf tierproduktfreien Nährböden) kultiviert werden. Jedoch kann der Mensch nicht alle B12-Varianten nutzen! Spirulina und andere Produkte mit Cyanobakterien („blaugrüne Algen“) eigenen sich zum Beispiel nicht zur Nahrungsergänzung, obwohl sie zuweilen dafür beworben werden!

Vitamin D: Der einfachste Weg zu Vitamin D ist genügend Sonne auf der Haut. Darüber hinaus enthalten Avocado und einige Speisepilze Vitamin D. Manche Pilzsorten können sogar gezielt damit angereichert werden. Mit Nahrungsergänzungsmitteln kann zusätzlich Vitamin D zugeführt werden, auch in Kombination mit Calcium. Allerdings sind die Dosierungsvorschriften auf der Packung, oder besser vom Arzt, unbedingt einzuhalten – Vitamin D gehört zu jenen Vitaminen, die bei Überdosierung zu Vergiftungserscheinungen führen können!

Zink: Kann zum Beispiel in Soja, Haferflocken oder Hülsenfrüchten (bei verminderter Bioverfügbarkeit durch Phytinsäure!) aufgenommen werden. Zusätzlich gibt es zinkhaltige Nahrungsergänzungsmittel.

Vitamin B2 (Riboflavin): Ist zum Beispiel in Vollkornprodukten, Broccoli, Spargel oder Spinat enthalten. In verschiedenen Nahrungsergänzungsmitteln sind die B-Vitamine zudem kombiniert enthalten.
Funktioniert vegane Ernährung bei Kindern und während Schwangerschaft und Stillzeit?

Kinder und Jugendliche im Wachstum, ob vor oder nach der Geburt, haben einen erhöhten Bedarf an vielen der genannten Nährstoffe, zum Beispiel Calcium und Vitamin D für den Knochenaufbau, Vitamin B12 für die Entwicklung des Nervensystems und viele andere mehr. Deshalb ist die gute Versorgung von vegan ernährten Schwangeren, Kindern und Jugendlichen eine noch grössere Herausforderung als die vegane Ernährung für nicht-schwangere Erwachsene. Das gilt übrigens auch für ältere Menschen, die einige Nährstoffe aus verschiedenen Gründen weniger effektiv aufnehmen als Jüngere.

Deshalb raten sowohl das Schweizerische Bundesamt für Lebensmittelsicherheit und Veterinärwesen (BLV) als auch die Deutsche Gesellschaft für Ernährung (DGE) ausdrücklich von einer veganen Ernährung von Schwangeren, Kindern und Alten ab. In Italien diskutiert das Parlament gar einen Gesetzesentwurf, der Gefängnisstrafen für die Fehlernährung von Kleinkindern vorsieht.

Entsprechende Organisationen im englischsprachigen Raum teilen diese Bedenken, trauen „ihrer“ Bevölkerung aber die Bewältung der Herausforderungen einer veganen Ernährung anscheinend eher zu. So heissen sie eine mit dem nötigen Wissen und Aufwand betriebene vegane Ernährung ihrer gesundheitlichen Vorteile wegen in allen Lebensphasen gut. Nichts desto trotz machen Einzefälle von schwerwiegender Fehlernährung hüben wie drüben Schlagzeilen.

 

Was fressen unsere Haustiere?

Was braucht der Haushund?

Der Hund gilt als bester Freund des Menschen – und zwar schon praktisch ebenso lange, wie es den modernen Menschen gibt. So hatten unsere Haushunde ebenso lange Zeit, ihre Verdauung an die extrem vielfältige Lebensweise „ihrer“ Menschen anzupassen. Das heisst, Haushunde, die schon rund 20.000 Jahre an der Seite des Menschen leben, sind heute Allesfresser wie wir auch.

Damit steht Hunden im Prinzip die gleiche Vielfalt von Ernährungsphilosophien offen wie dem Menschen. Als höhere Säugetiere haben Hunde jedoch auch einen ähnlichen Bedarf an Nährstoffen wie wir. Dabei weicht allerdings die Fähigkeit zur Verwertung dieser Nährstoffe mitunter stark von der unseren ab.

So nehmen Hunde zum Beispiel Calcium – das auch sie für den Knochenbau benötigen – wesentlich schlechter auf als der Mensch. Kommt dazu die schlechtere Bioverfügbarkeit von pflanzlichem Calcium, wird deutlich, dass die Calciumversorgung eines Hundes bei veganer Fütterung Schwierigkeiten machen wird und den Einsatz von hochdosierten Nahrungsergänzungsmitteln erfordert.

Zwei zusätzliche „tierische“ Nährstoffe für den Hund sind überdies erwähnenswert:

L-Carnitin: Carnitin : Muss veganer Ernährung für den Hund unbedingt zugesetzt werden!Eine sticktstofforganische Verbindung, die als Rezeptormolekül – also als Andockstelle für Signalmoleküle – und als Transporthilfe für langkettige Fettsäuren in die Mitochondrien fungiert. Sie kommt vornehmlich in rotem Fleisch, Fisch, Leber und Herz vor. Menschen wie Hunde können L-Carnitin bei ausreichender Versorgung mit den nötigen Aminosäuren und verschiedenen Nährstoffen selbst herstellen. Hunde scheiden L-Carnitin jedoch vermehrt über die Niere aus, weshalb sie auf regelmässige Zufuhr angewiesen sind. Folgen eines Carnitin-Mangels sind schwere Herzerkrankungen.

Taurin: Taurin: Muss veganer Ernährung für Katzen und Hunde zwingend zugesetzt werden!Ein kleines organisches Molekül, das menschliche und Hundekörper aus schwefelhaltigen Aminosäuren herstellen können. Es unterstützt die Arbeit reizleitender Zellen (Nerven, Muskeln) – nicht zuletzt derer des Herzens. So fördert Taurin die Herzgesundheit und ist überdies ein starkes Antioxidans – es kann also Gewebe vor Stress bewahren, indem es reaktive (Abfall-)Verbindungen abfängt und unschädlich macht, ehe sie mit ihrer Umgebung ungewollte und nicht selten schädliche Reaktionen eingehen. Entsprechend seiner Aufgabe kommt Taurin vornehmlich in Muskelfleisch einschliesslich des Herzens vor, sodass eine vegane Ernährung ohne Nahrungsergänzungsmittel bei Hunden trotz eigener Herstellung zu einer Unterversorgung und damit zu Herzerkrankungen führen kann.

Zudem haben trächtige und säugende Hündinnen sowie heranwachsende Welpen ebenso erhöhte Nährstoffbedürfnisse wie menschliche Schwangere und Kinder, sodass ihre vegane Ernährung auch in gleicher Weise Schwierigkeiten macht.

Eine verantwortungsvolle vegane Ernährung für Hunde ist damit mit zusätzlichem Aufwand gegenüber der entsprechenden Ernährung von Menschen verbunden, geht ebenso wie letztere mit dem Einsatz von Nahrungsergänzungsmitteln und vermehrten (Tier-)arztbesuchen zur Überwachung der Nährstoffversorgung einher und erfordert auch vom menschlichen Veganer zusätzliches Wissen. Ob sich bei all dem Aufwand tatsächlich die vegane Ernährung oder vielmehr die vermehrte Zuwendung als solche förderlich auf die Gesundheit der Hunde auswirkt, ist dabei zweifelhaft.

Wesentlich einfacher ist für den allesfressenden Hund hingegen eine ovo-lacto-vegetarische Ernährung, bei welcher zwar auf Fleisch-, nicht aber auf Milch- und Eiprodukte verzichtet wird.

Was braucht die Hauskatze?

Katzen begleiten den Menschen auch schon, seit er sesshaft geworden ist. Allerdings waren sie bis vor Kurzem weniger beste Freunde als Nutztiere, deren Aufgabe es war, im Umfeld menschlicher Ansiedlungen Mäuse und andere ungeliebte Gäste zu jagen (und zu fressen) und somit fern zu halten. So hatten Hauskatzen bis in die jüngste Zeit keinen Anlass, ihre Verdauung einer Fütterung durch Menschen anzupassen. Sie sind daher echte Fleischfresser geblieben.

Somit entspricht eine vegane wie auch eine ovo-lacto-vegetarische Ernährung nicht der Natur der Katze. Dazu kommt, dass Katzen sich nicht wie Hunde durch Aushungern zu einer Nahrungsumstellung zwingen lassen – sie sterben lieber als ihre Futterprägung aufzugeben.

Nicht nur in meinen Augen entbehrt eine solche Katzen-Ernährung daher jeden Rest eines Sinns, sondern auch Fachtierärzte und andere Experten für Tierernährung stehen ihr ablehnend gegenüber.

Fazit

Vegane Ernährung ist für den Menschen möglich, aber kompliziert. Sie erfordert viel Wissen und noch mehr Aufwand, insbesondere wenn Heranwachsende damit versorgt werden sollen. Ein gedankenloses Weglassen „alles Tierischen“ kann sogar gefährlich werden. Überdies lässt mich allein schon die Häufigkeit, mit welcher in der Liste der veganen Ersatznahrung „Nahrungsergänzungsmittel“ – zuweilen gar als einzige Alternative – auftauchen, daran zweifeln, dass die vegane Ernährung des Menschen irgendwie „natürlich“ sein kann.

Eine ganzheitlich vegane Lebensweise kann noch komplizierter werden – nicht zuletzt, wenn es um die Haltung von Haustieren geht:

Ein Haushund kann vegan ernährt werden, ohne dass dies „unnatürlicher“ als beim Menschen wäre (es ist aber ebenso wenig „natürlicher“!) – das ist aber mindestens genauso kompliziert und aufwändig und erfordert Wissen über die menschliche Ernährung hinaus.

Eine Katze frisst hingegen von Natur aus Fleisch und braucht es auch. Eine vegane oder auch nur vegetarische Ernährung von Katzen kann daher (nicht nur) in meinen Augen nicht im Sinne der Tiere sein.

Aber ist es überhaupt „vegan“, Haustiere zu halten? Was meint ihr?

Schon im Vorfeld der Olympischen Sommerspiele in Brasilien legte sich ein gefürchteter, aber auch nur zu bekannter Schatten solcher Sport-Events über Rio: Der Skandal um staatlich organisiertes Doping in Russland, welcher um ein Haar zum Ausschluss sämtlicher russischer Teilnehmer geführt hätte. Die Diskussion um den Entscheid des IOCs zum Teil-Ausschluss hat hohe Wellen geschlagen – und gar nicht überraschend tauchen neue Meldungen über positive Doping-Proben von Athletinnen aus anderen Nationen auf.

Aber nicht nur im Leistungssport wird gedopt – nicht ums sonst liest sich die Dopingliste der Stiftung Antidoping Schweiz wie eine Beweismittel-Liste bei der Drogenfahndung. Denn auch im Breitensport und besonders im alltäglichen Leben scheint viel zu oft nicht mehr zu genügen, was ein Mensch von sich aus leisten kann. Also wird, wo immer möglich ist, am menschlichen Körper geschraubt und manipuliert…

Den oftmals massiven Gesundheitsgefahren, die das mit sich bringt, sind sich (zu) viele gar nicht bewusst. Diese Geschichte soll einen Einblick darin geben, wie verschiedene zum Doping verwendete Substanzen und Methoden auf den Körper wirken, und welche Gefahren sich daraus ergeben. Denn unsere Körperfunktionen sind so komplex und fein aufeinander abgestimmt, dass daran herum zu schrauben gar nicht gesund sein kann.

Die Schraubenzieher: Womit gedopt wird

Der Chemische Reporter hat eine schöne Kurzübersicht über die wichtigsten Dopingmittel zusammengestellt. Die Stoffe, die sich dort und auf der Dopingliste finden, sind nahezu alle als Medikamente zur Behandlung von Krankheiten entwickelt oder entdeckt worden – um eine Schraube, wenn sie locker ist – wieder anziehen zu können. Auf den gesunden Körper, der keiner „Reparatur“ bedarf, wirken sie jedoch ebenso – sodass eine Leistungssteigerung erzielt werden kann. Aber wie bei einer zu fest angezogenen Schraube, die sich festbeisst, ist eine Verschlimmbesserung dabei geradezu abzusehen.

Never change a running system

Dieser Satz sollte jedem, der sich mit IT-Technik beschäftigt, geläufig sein – insbesondere wenn er oder sie beim „Optimieren“ am Computer schon Erfahrung mit derlei Verschlimmbesserungen gemacht hat. Mehr noch als ein Computer ist jedoch der menschliche Körper ein hochkomplexes System aufeinander abgestimmter Prozesse, und dementsprechend sollte dieser Satz ebenso für unsere Gesundheit gelten. Denn wer daran schraubt, kann letztlich kaum überblicken, was er da tut (für diejenigen, die es trotzdem versuchen wollen, gibt es atemberaubende Karten unserer Stoffwechsel-Wege…).

Ich habe die gemäss Doping-Liste verbotenen Substanzen und Methoden nach Art der Einflussnahme auf den menschlichen Körper sortiert, was grob der Sortierung der „offiziellen“ Doping-Liste entspricht. Denn aus der Art der Einflussnahme ergeben sich auch die Gefahren, die der Missbrauch der jeweiligen Substanz oder Methode mit sich bringt:

 

1. Hormon- und Stoffwechselmodulatoren

Hormone, jene „Botenstoffe“, die von körpereigenen Drüsen produziert und ausgeschüttet werden, um – oft in entfernten Körperregionen – Stoffwechselprozesse in Gang zu setzen, zu stoppen und zu regulieren, sind die Schrauben schlechthin – schliesslich ist das Steuern von Körperfunktionen ihre Hauptaufgabe. Die in der internationalen Dopingliste als „Hormon- und Stoffwechselmodulatoren“ bezeichneten Substanzen sind keine Hormone im eigentlichen Sinne, aber sie verändern die Wirkung von Hormonen, indem sie die Bereitstellung bestimmter Hormone fördern oder hemmen oder mit den Bindestellen, an welchen Hormone ihre Botschaften weitergeben, wechselwirken und die jeweilige Botschaft beflügeln oder aufhalten.

Zu den bekanntesten Substanzen dieser Art zählen:

  • Anabolika: darunter Anabole Steroide und b-2-Agonisten:“Anabole“ Stoffe fördern den Aufbau von körpereigenem Gewebe. Anabole Steroide sind chemische Verwandte des männlichen Geschlechtshormons Testosteron, die fördernd auf den Aufbau von Proteinen und damit von Muskelmasse wirken. b-2-Agonisten haben eine vergleichbare Wirkung, entfalten diese aber fernab vom Geschlechtshormon-Haushalt.
  • Myostatininhibitoren:Das Protein Myostatin limitiert im gesunden Körper das Muskelwachstum – ein Stoff, der diese limitierende Wirkung hemmt, kann somit zu ungezügeltem Muskelwachstum führen.
  • Erythropoetin („EPO“):Dieses Protein kann an sogenannte Vorläuferzellen im Knochenmark binden und diesen die Botschaft „entwickelt euch zu roten Blutzellen“ übermitteln. Die so vermehrt gebildeten roten Blutzellen erhöhen die Sauerstoff-Transportkapazität und somit die Leistungsfähigkeit des Körpers.
  • Beta-Blocker: Hemmen die Wirkung der Stress-Hormone Adrenalin und Noradrenalin und vermindern damit Nervosität, Muskelzittern und weitere Stress-Symptome.
  • Glucocorticoide („Cortison“): Beeinflussen den Zuckerstoffwechsel und hemmen Entzündungsreaktionen, die auch Folge körperlicher Belastung sein können.
  • Insulin: Das Hormon aus der Bauchspeicheldrüse senkt den Blutzuckerspiegel, indem es die Einlagerung von Glucose in das (Muskel-)Gewebe fördert, wo es im Wettkampf (wenn Leistung erforderlich ist) als Energielieferant auf Abruf bereit steht. Ausserdem wirkt Insulin auf den Aminosäure- und Fettstoffwechsel.
  • Meldonium: Ursprünglich als Herz-Medikament entwickelt hemmt Meldonium die körpereigene Herstellung von Carnitin, was eine Anreicherung von dessen Vorstufe g-Butyrobetain „GBB“ zur Folge hat. GBB soll im Falle eines Herzkranz-Gefässverschlusses die Energieversorgung der abgeschnittenen Zellen verbessern – im gesunden Körper kann diese Fähigkeit der Leistungssteigerung dienen. Im Übrigen spielt auch Carnitin eine wichtige Rolle im Energiestoffwechsel und gilt als „Fatburner“ schlechthin, der als (erlaubte) Nahrungsergänzung gerade im Ausdauersport ebenfalls beliebt ist.

 

Modulatoren, die Wachstum von Gewebe fördern, tun dies in der Regel nicht besonders zielgenau. Was also das Wachstum von gewünschten Muskeln oder Blutzellen fördern soll, fördert oft auch das Wachstum ganz anderer Dinge, wie von Gliedmassen (Akromegalie), inneren Organen (Herz und Leber) oder von Krebs-Tumoren – und das unumkehrbar.Für die anabolen Steroide kommt der Eingriff in den Geschlechts-Hormonhaushalt hinzu, der bei Männern zur Ausbildung weiblicher (Brustwachstum!), bei Frauen zur Ausbildung männlicher Merkmale (tiefe Stimme und mehr) und bei beiden Geschlechtern zu weiteren Folgen hormonellen Durcheinanders (Akne!), sowie zu Arterienverkalkung bis hin zum Herzinfarkt führen kann.

Wer Insulin zur Leistungssteigerung verwendet, riskiert einen Abfall des Blutzuckerspiegels, welcher zur Unterversorgung des Gehirns mit Energie mit Bewusstseinsverlust – und im schlimmsten Fall mit Todesfolge – führen kann. Ebenso geht nach hinten los, wenn Typ-1-Diabetiker, deren Körper selbst kein Insulin bereitstellen kann, zur Förderung der Fettverbrennung durch „Hungern“ auf die Zufuhr des Hormons verzichten (in meinen Augen ist Insulinpurging auch eine Form von Alltags-Doping – aber zumindest vergleichbar gefährlich) .

In vielen Fällen bewirkt das Schrauben am Stoffwechsel zudem eine sogenannte „negative Rückkopplung“: Viele Stoffwechselprozesse sind so gestaltet, dass ein reichliches Vorhandensein des jeweiligen Produktes dessen Herstellung ausbremst, während ein Mangel sie ankurbelt. Wird ein Modulator nun von aussen zugeführt, stellt der Körper mitunter die Herstellung desselben oder eines entsprechenden Verwandten ein, was zur Entstehung einer Abhängigkeit beitragen kann.

Einen weiteren Beitrag zu einer Abhängigkeit von solchen Dopingmitteln „leisten“ psychische Veränderungen, die mit dem Schrauben am Hormonhaushalt einher gehen und von Libido-Verlust über gesteigerte Aggressivität bis hin zu schweren Erkrankungen wie Depressionen erstrecken können.

 

2.Stimulanzien

Aufputschmittel aller Art sind (leider) in vielen Lebensbereichen Gang und Gäbe. Sie fördern die Bereitstellung von Energie, die für körperliche oder/und geistige Leistung verwendet werden kann, oder heben gar natürliche Grenzen der Energiebereitstellung („Erschöpfung“) auf.

Das vielleicht bekannteste Stimulans – Koffein – ist so alltäglich, dass es nicht verboten ist. Zu dieser Stoffgruppe gehören jedoch auch bekannte Drogen, z.B. Amphetamine wie Ecstasy, Kokain und Medikamente wie Ephedrin und Methylphenidat, oder das hochgiftige Strychnin.

 

Unser Stoffwechsel ist mit „Sicherheitsmechanismen“ ausgestattet, die verhindern, dass mehr Energie aus seinen Speichern bereitgestellt wird, als der Körper regenerieren könnte. Das macht sich bemerkbar, indem wir „müde“ werden, wenn die so festgelegten Untergrenzen erreicht werden. Aufputschmittel hebeln diese Sicherheitsvorkehrungen aus, sodass die Energiespeicher mehr oder minder nach Belieben geleert werden können. Das ermöglicht eine höhere oder anhaltendere Leistungsfähigkeit – im Sport, im Arbeitsalltag oder auch beim „Partymachen“ ebenso wie die vollständige Ausbeutung der körpereigenen Energiereserven bis zur tödlichen Erschöpfung.

Ein anhaltender Wach- oder gar Erregungszustand wird anfangs oft als positiv empfunden, zieht auf Dauer aber schwerwiegende psychische Beeinträchtigungen bis hin zur Abhängigkeit und eine erhebliche Belastung des Herz-Kreislauf-Systems nach sich.

 

3. Narkotika

Starke Schmerzmittel – im Wettkampf verboten sind solche aus der Gruppe der Opioide – vermindern oder unterbinden gar die Schmerzwahrnehmung, die mit starker körperlicher Belastung einhergehen kann. Und wenn der Kontakt mit dem Turngerät oder dem Gegner im Kampfsport, wie auch strapazierte Muskeln im Ausdauersport weniger weh tun, geht es um so akrobatischer, unbezwingbarer oder einfach andauernder zu und her. Zu den Opioiden zählen bekannte Medikamente wie Morphin und Codein, aber auch das als Droge verbreitete Heroin.

 

Auch das Empfinden von Schmerz ist ein Sicherheitsmechanismus unseres Körpers: Was wehtut, veranlasst uns zur sofortigen Änderung möglicherweise gefährlicher Umstände – ob durch reflexartiges Zurückweichen von einer Hitzequelle, Ausruhen bei schmerzenden Muskeln oder Ruhigstellen eines verletzten Körperteils. Die Einnahme von Opioiden vor einem Wettkampf hebelt die schützende Funktion von Schmerzen aus und vermindert überdies die geistige Aktivität, sodass eine Warnung vor drohender Erschöpfung oder folgenschwerer Verletzungen womöglich „ungehört“ bleibt.

Davon abgesehen wird der „in Watte gepackte“ Zustand nach Konsum von Opioiden, in welchem auch Ängste und Probleme verdrängt werden, zunächst als angenehm empfunden und schnell zur Gewöhnung. Dementsprechend schnell stellt sich eine starke Abhängigkeit von solchen Wirkstoffen ein, während der verstärkte Konsum mit schwerwiegenden psychischen Folgen, Apathie, Bewusstseinsstörungen und im Falle einer Überdosis zu Atemlähmung und Kreislaufschock führen kann.

 

4. Blutdoping

Eher eine Methode, denn eine Substanz: Durch Transfusion von eigenem oder Spenderblut oder Blutersatzstoffen soll das Gleiche erreicht werden wie durch die Zufuhr von EPO: Eine Erhöhung des Anteils roter Blutzellen im Blut, die dann um so mehr für körperliche Leistung notwendigen Sauerstoff transportieren können.

 

Ebenso wie beim Missbrauch von EPO zur vermehrten Neubildung von roten Blutzellen kann die Transfusion derselben die Fliesseigenschaften des Blutes zu Ungunsten des Anwenders verändern: Je mehr sperrige rote Zellen das Blut enthält, desto „dickflüssiger“ ist es, und desto schwieriger gelangt es durch enge Blutgefässe hindurch: Es besteht die Gefahr der Entstehung von Thrombosen (Blutgerinnseln) oder Embolien (Blockade eines Blutgefässes durch einen Pfropf). Ein Hämatokrit (also Anteil der (roten) Blutzellen am Gesamtblutvolumen) von 60% und mehr gilt als ernsthaft gesundheitsgefährdend.

Darüber hinaus birgt Blutdoping alle Risiken, die auch mit anderen Transfusionen einher gehen: Infektionen durch unsachgemäss gehandhabte oder gelagerte Konserven oder durch Erreger wie HIV oder Hepatitis-Viren in Fremdblut.

 

5. Diuretika und andere Maskierungsmittel

Diuretika führen zu einer teilweise stark vermehrten Ausscheidung von Flüssigkeit über die Nieren. Das kann dienlich sein, um im Vorfeld von nach Gewichtsklassen eingeteilter Wettkämpfe kurzfristig an Gewicht zu verlieren und als leichter klassifiziert zu werden, oder um andere Substanzen, die nicht gefunden werden sollen, aus dem Körper zu schwemmen.

Eine andere Möglichkeit zur Maskierung stellt die Erhöhung des Blutvolumens durch Infusion von „Plasmaexpandern“ – das sind Stoffe, die nicht durch die Blutgefässwände dringen können – was zur Folge hat, dass dem osmotischen Druck folgend Wasser aus dem umgebenden Gewebe in die Blutgefässe verlagert wird. Auf diese Weise kann der Erhöhung des Hämatokrits durch Blutdoping oder EPO oder den Folgen von Flüssigkeitsverlust beim Ausdauersport entgegengewirkt werden.

 

Der schnelle Flüssigkeitsverlust, der durch Diuretika herbeigeführt werden kann, bringt den Wasser- und Salzhaushalt des Körpers durcheinander, mit allen Folgen einer Dehydrierung: Blutdruckabfall, Herzrhythmusstörungen, Kreislaufschock und die Risiken eines erhöhten Hämatokrits. Die Ausscheidung all der Flüssigkeit über die Nieren kann zudem diese Organe in Mitleidenschaft ziehen.

Plasmaexpander wirken dem zwar entgegen, entziehen das dazu nötige Wasser jedoch dem umliegenden Körpergewebe, sodass das Problem Flüssigkeitsmangel damit nicht behoben, sondern allenfalls verschoben wird.

 

6. Gen-Doping

Stoffwechsel-Modulatoren, die dem Körper von aussen zugeführt werden, sind verboten – solche, die der Körper selbst herstellt, logischerweise nicht. Was wäre also, wenn man den Körper anleiten könnte, die gewünschten Substanzen selbst herzustellen? Die Rezepte und Gebrauchsanweisungen für all unsere Stoffwechselschritte sind in unseren Genen hinterlegt – und die Gen-Technologie erlaubt uns mittlerweile, diese Rezeptsammlung zu editieren – beispielsweise ein Gen für ein leistungsförderndes Protein hinzuzufügen oder die Herstellungsrate für ein natürlich vorgesehenes Protein zu erhöhen oder zu senken. Als „Gentherapie“ zur Korrektur von Defekten, die zu Erbkrankheiten führen, ist das eine tolle Sache – und zur permanenten Leistungssteigerung ohne Einnahme von Substanzen verlockend…

Das klingt im ersten Augenblick nach  Khan Noonien Singh und seinen genetisch aufgewerteten-Kollegen aus Star Trek – aber so weit ist man (zum Glück) noch nicht. Zum einen ist die vorgeburtliche Ausstattung von Menschen mit leistungsförderlichen Merkmalen (noch) nicht möglich, zum anderen steckt auch die Korrektur unseres Erbguts mittels „Gentherapie“ noch in den Kinderschuhen, sodass sie mit Fehleranfälligkeit und begrenzten Erfolgschancen einher geht. Dennoch ist die Verlockung so gross, dass Gen-Doping dieser Art bereits seit einigen Jahren als verbotene Methode auf der Dopingliste steht.

Da die Gen-Therapie heutzutage noch nicht ausgereift und Gen-Doping illegal ist, sind die Risiken dieser Methode vielfältig. Sie reichen von verunreinigtem oder minderwertigem Material aus dem „Hinterhof-Labor“, mangelnder Betreuung, unerprobten Behandlungen über das Risiko von Unverträglichkeiten gegenüber den eingesetzten „Gen-Fähren“ (zum Beispiel Viren, die genetisches Material in das Erbgut des Empfängers einfügen sollen) bis dahin, dass das Ergebnis der Veränderung nicht das Ewünschte, sondern vielmehr eine Beeinträchtigung ist. Denn eine einmal erfolgte „Gen-Therapie“ ist mit heutigen Mitteln nicht rückgängig zu machen.

 

Fazit

Doping – das Schrauben am Stoffwechsel – gefährdet massiv und oft unwiderruflich die Gesundheit. Und nicht nur die von Spitzensportlern, sondern auch all die all jener, die im Breitensport wie beim Krafttraining oder im Berufs- oder Ausbildungsalltag darauf zurückgreifen. Darüber hinaus machen viele dieser Dopingmittel schnell abhängig und sind nicht umsonst als „Drogen“ berüchtigt. Selbst „einmal ausprobieren“ ist also häufig mit erheblichem Risiko verbunden.

Dass unsere Gesellschaft uns zunehmend Leistungen abverlangt, die derart jenseits der menschlichen Leistungsfähigkeit liegen, dass Doping-Mittel und -methoden immer weitere Verbreitung finden, gibt mehr sehr zu denken. Nicht zuletzt, weil auch ich in der Zeit um mein Abitur eine Substanz von der Doping-Liste aus medizinischen Gründen verordnet bekommen habe und mich heute verunsichert frage, ob meine Diagnose damals wirklich gerechtfertigt oder letztlich ein Produkt unserer Leistungsgesellschaft war.

Das Medikament nehme ich übrigens seit bald 10 Jahren nicht mehr und stelle mir heute mehr denn je die Frage: Was können wir – jede/r einzelne – gegen diese bedenkliche Höher-Schneller-Weiter-Tendenz in unserer Gesellschaft tun?

Ich habe in den letzten Jahren zwei Dinge gelernt:

  1. Setze bei dem, was du tust, auf deine eigenen Gaben und Leidenschaften (Stärken hat jeder – die Kunst ist, sich derer bewusst zu werden).
  2. Erkenne deine eigenen Leistungen als solche an. Und das gilt vor allem für die kleinen! Denn was für den Einen vielleicht selbstverständlich ist, kann für den anderen eine Leistung sein – und darf, nein sollte gefeiert werden.

 

Denn wer mit sich selbst zufrieden ist, ist bestens dafür gerüstet, unmenschliche Messlatten links liegen zu lassen und – hoffentlich – kollektiv die Bremse zu ziehen. Je mehr wir Mensch sein dürfen, desto leichter wird es uns fallen, Mensch zu sein – gesund und ohne Gift.

Und ihr? Habt ihr schon Erfahrung mit Doping – in welcher Form auch immer – gemacht? Wie steht ihr zur heutigen Leistungsgeselllschaft?