Wie wäscht Seife? Wie kann ein Helikopter fliegen? Warum hilft Streusalz gegen Eisglätte? Antworten auf spannende Fragen von kleinen und grossen Forschern findet ihr hier!

Liebe Leser,

Ich freue mich, heute Franziska Hufsky von BioInfoWelten hier begrüssen zu dürfen! Franziska ist Bioinformatikerin und schreibt auf ihrem Blog herrlich zweideutig von Mäusen, Bäumen, Viren und Co – mit anderen Worten von der Verknüpfung von Biochemie und Biologie mit der Programmierung und Nutzung von Computern. Hier und heute geht es aber vornehmlich chemisch zu und her, denn Franziska führt uns in die spannende Welt der Halogene ein, einer Gruppe von chemischen Elementen, die aus unserem Alltag nicht wegzudenken ist.

Viel Spass beim Lesen wünscht
Eure Kathi Keinstein

Halogene: von A(ntibiotikum) bis (Sal)Z

Halogen bedeutet eigentlich (aus dem Altgriechischen übersetzt) „Salzerzeuger“. Das bekannteste Beispiel dafür dürfte wohl Natriumchlorid (NaCl) sein. Sagt euch nichts? Die Rede ist von Kochsalz, also dem handelsüblichen Speisesalz. Kochsalz besteht (wie der Name schon sagt) aus Natrium und Chlor. Natrium (Na) ist ein Alkalimetall. Chlor (Cl) ist ein Halogen. Natriumchlorid ist also das Natriumsalz der Chlorwasserstoffsäure, auch bekannt als Salzsäure. Zu den Halogenen zählen außerdem noch Fluor, Brom, Iod, das seltene radioaktive Astat und das künstliche, sehr instabile Ununseptium.

Kochsalz, Natriumchlorid (NaCl)(Bild von APPER aus der deutschsprachigen Wikipedia, CC BY-SA 3.0)

Nun bin ich selbst kein Chemiker und weiß auch nicht viel mehr über die Chemie der Halogene zu erzählen. Dafür kenne ich aber eine andere Geschichte über Halogene und die beginnt im Krankenhaus

Panik im Krankenhaus

Krankenhauskeime. Ein Wort, welches immer häufiger durch die Medien geht und Angst und Schrecken verbreitet. Aber was soll das überhaupt sein und warum ist das angeblich gefährlich? Zunächst einmal sind Krankenhauskeime einfach Erreger, die man sich erst bei einem Aufenthalt im Krankenhaus einfängt. In der Regel handelt es sich dabei um Bakterien. Klingt jetzt erstmal nicht so schlimm. Man hat den Arzt ja schon vor Ort. Warum also diese Panikmache?

In den meisten Fällen sind Krankenhauskeime nicht schlimm. In der Regel werden sie vom Immunsystem in Schach gehalten oder können durch die Einnahme von Antibiotika bekämpft werden. Problematisch sind sie aber für immungeschwächte Patienten. Also Patienten, deren Immunsystem durch eine andere Krankheit, durch Alter oder durch Einnahme bestimmter Medikamente nicht auf vollen Touren läuft.

Multiresistente Bakterien

Das eigentliche Problem beginnt aber erst, wenn die Bakterien sich nicht mehr durch Antibiotika töten lassen. Man spricht von „Resistenz“. „Antibiotika“ ist ein Begriff für eine ganze Gruppe an Medikamenten unterschiedlicher Wirkstoffe, die eines gemeinsam haben: sie töten Bakterien. Antibiotika stammen aus den unterschiedlichsten Stoffgruppen und haben die unterschiedlichsten Wirkungsweisen im Kampf gegen Bakterien: zum Beispiel lösen sie die Zellwände der Bakterien auf oder hindern die Bakterien daran, sich zu vermehren. Nicht jedes Antibiotikum hilft gegen jedes Bakterium. Es gibt also ganz natürliche Resistenzen gegen Antibiotika. Bakterien können aber auch neue Resistenzen entwickeln. Durch den oft verantwortungslosen Umgang mit Antibiotika (zum Beispiel, indem man die Packung nicht bis zum Ende einnimmt oder mit Antibiotika vollgepumptes Billigfleisch kauft) züchten wir geradezu solche Resistenzen. Wird ein Bakterienstamm gegen mehrere oder gar alle uns bekannten Antibiotika resistent, dann spricht man von „Multiresistenz“. Und genau ab diesem Punkt sind wir ziemlich hilflos, denn wir können die Erreger nicht mehr töten.

Backterienstamm mit unterschiedlichen Resistenzleveln wir mit Antibiotikum bekämpft. Resistene Bakterien überleben. Resistenter Stamm entsteht.

Was tun?

Es ist also wichtig, dass wir verantwortungsvoller im Umgang mit Antibiotika handeln. Aber um die multiresistenten Bakterien bekämpfen zu können, brauchen wir vor allem eines: neue Wirkstoffe. Und zwar möglichst Wirkstoffe, die sich stark von den uns bekannten Antibiotika unterscheiden. Und jetzt sind wir endlich wieder auf meinem Fachgebiet angelangt. Und bei den Halogenen.

Die Salzerzeuger im Antibiotikum

Viele der bekannten antibiotischen Wirkstoffe enthalten Halogene, nämlich Chlor, Fluor oder Brom. Die ersten chlorhaltigen Antibiotika gab es schon gegen Ende der 40er Jahre. In den 50er Jahren kam das chlorhaltige Antibiotikum Vancomycin auf den Markt; in den 80ern wurde es als wirksames Mittel gegen multiresistente Staphylokokken erkannt. Vancomycin ist ein Reserveantibiotikum: es wird erst eingesetzt, wenn andere Antibiotika aufgrund von Resistenz nicht mehr wirksam sind. Vancomycin war daher oft die „letzte Hoffnung“. Aber auch diese endete, als die ersten Vancomycin-resistenten Erreger in Krankenhäusern auftraten. Eines der wichtigsten Reserveantibiotika heute ist das fluorhaltige Linezolid. Es tötet sowohl die bereits erwähnten Vancomycin-resistenten Erreger, als auch Methicillin-resistente Stämme und Penicillin-resistente Stämme bestimmter Bakterien.

Halogene als Antibiotika
Zeitstrahl der Antibiotika Entwicklung. Datenquellen: Wikipedia, Timeline of antibiotics (Markteinführung) und K. Lewis, Platforms for antibiotic discovery, Nature Reviews Drug Discovery 12, 371–387 (2013) (Zeitspanne bis zur Resistenz).

In den 80ern gab es einen regelrechten Antibiotika-Boom. Viele neue Wirkstoffe kamen auf den Markt, darunter viele fluorhaltige. Ab Mitte der 90er gab es einen Einbruch in der Entdeckung neuer Antibiotika. Das lag vor allem daran, dass neu entdeckte Wirkstoffe zu ähnlich zu den bereits bekannten waren. Resistente Bakterien sind gegen ähnliche Wirkstoffe häufig auch resistent. Seit 2010 kamen sieben neue Wirkstoffe auf den Markt, von denen fünf halogenhaltig sind. In den letzten Jahren scheinen sich Forscher in der Pharmazie mehr und mehr auf solche halogenhaltigen Wirkstoffe zu konzentrieren und gezielt danach zu suchen.

Die Schatzsuche

Wie findet man neue Antibiotika? Halogenhaltige organische Stoffe, die giftig für Bakterien sind, werden von anderen Bakterien oder Pilzen zur Abwehr hergestellt. Vielleicht habt ihr schon einmal von der Entdeckung des Penicillin gehört. Alexander Fleming wollte eigentlich Staphylokokken-Kulturen (Bakterien) züchten, aber ein Schimmelpilz verunreinigte die Kultur und tötete die Bakterien. Heute lässt man verschiedene Bakterienstämme gegeneinander „kämpfen“, in der Hoffnung, sie produzieren dabei interessante, neue, potentielle Wirkstoffe. Diese Wirkstoffe müssen zunächst einmal identifiziert werden — und das ist gar nicht so einfach. Sie sollen ja möglichst neu und unbekannt sein, man kann also nicht einfach in einer Datenbank nachschauen. Statt mühseliger Analyse per Hand, greift man dabei heute auf bioinformatische Methoden zurück. Zuerst wird die Summenformel bestimmt. Um das zu erleichtern, kann man zuerst testen, ob Halogene enthalten sind. Kennt man die Summenformel, wird die Bestimmung der Strukturformel einfacher. Das ist ein aufwendiger und kostenintensiver Prozess, der aber mittels bioinformatischer Methoden wesentlich beschleunigt werden kann.

K wie Krebs, N wie Narkose und T wie Teflon

Neben antibiotisch — also gegen Bakterien — wirkenden Medikamenten findet man Halogene noch in vielen weiteren Wirkstoffen. Das chlorhaltig Toremifen zum Beispiel ist ein Brustkrebsmedikament; Mitotan wird zur Behandlung der Symptome bei Nebennierenkrebs eingesetzt, wenn dieser nicht operiert werden kann. Die flourhaltigen Gase Desfluran, Sevofluran und Enfluran nutzen Anästhesisten zur Einleitung der Narkose. Halogene verbessern viele wichtige Eigenschaften von Medikamenten, wie zum Beispiel die Aufnahme in die Blutbahn oder die Wirkungsdauer des Medikaments.

Teflon (Polytetrafluorethylen) ist eine Kette aus Tetrafluorethylen. (Bild von 4C – Own work, CC BY-SA 3.0 | Wikicommons)

Organische Halogenverbindungen spielen aber nicht nur in der Pharmazie eine große Rolle. Sie werden auch oft als Insektizide oder Pestizide eingesetzt. Dichlordiphenyltrichlorethan (C14H9Cl5) zum Beispiel war jahrzehntelang das weltweit meistverwendete Insektizid, insbesondere, weil es kaum toxisch für Säugetiere ist. Das chlorhaltige Gas Vinylchlorid (C2H3Cl) ist die Grundsubstanz zur Herstellung von Polyvinylchlorid (PVC), ein Kunststoff, den ihr sicher alle aus Fensterrahmen oder Bodenbelägen kennt. Und die Teflon-Beschichtung eurer Küchenpfanne besteht aus einer Kette aus Tetrafluorethylen (C2F4).

Jetzt kennt ihr die vielfältige Bedeutung von Halogenen außerhalb der Halogenglühlampen (die im Übrigen Iod oder Brom enthalten). Sicher findet man noch mehr Anwendungen von A wie Antibiotikum bis Z wie salZ.

Und ihr? Kanntet ihr Halogene schon vorher? Welche Anwendungen sind euch bekannt?

Mit Spannendem und Wissenswertem über Blut kann man ganze Bücher oder Website füllen! Und da Blut rund um Halloween allgegenwärtig ist, widme ich diesem Wunderstoff den diesjährigen Gruselbeitrag.

Mehr Halloween-Themen gibt es hier:

Unerwartet gruselige Filme erwarten euch in Jaris Flimmerkiste

Christopher von Hirn mit Ei hat einen echten Geisterjäger interviewt

Der Herbst ist spürbar angekommen, und einmal mehr ist die Nacht verstrichen, in welcher die Welt der Geister der unseren besonders nahe sein soll: Die Nacht auf Allerheiligen, Samhain – oder auf gut amerikanisch: Halloween. So sind Geister und alles Schaurige dieser Tage Motto für Partys, Kostüme, Schaufensterdeko, zahllose Blogartikel und sogar das Fernsehprogramm. Dabei erfreut sich ein besonders gruseliges Detail grosser Beliebtheit: Blut. Ob als Leibspeise für Vampire oder raffiniertes „Accessoire“ für Zombie-Kostüme und schaurige Dekorationen – Blut und Blutiges sind nicht wegzudenken, wenn es um Halloween geht.

Dabei ist Blut doch eigentlich gar nicht gruselig – sondern eine der spannendsten und nützlichsten Chemikalien überhaupt! So trägt es die überaus positive Bezeichnung „Lebenssaft“ zu Recht, denn Blut ist eine Flüssigkeit, die atmen kann! Wie genau das funktioniert, und wie das Blut dank dieser Fähigkeit einen ganzen Körper mit Energie versorgen kann, erzählt diese Geschichte.

Und da unser Lebenssaft damit viel zu kostbar ist, um als Gegenstand von Experimenten oder gar als Halloween-Dekoration zu enden, gibt es zum Schluss noch einige Tipps zum oft unvermeidlichen Umgang mit Blut: Wie wird man nach einem blutigen Unfall die hartnäckigen roten Flecken auf Kleidung und Co. wieder los?

Warum Blut uns zum Gruseln bringt

Blut ist flüssig, rot und undurchsichtig – eine Suspension: ein Gemisch aus verschiedenen chemischen Substanzen, von welchen mindestens eine fest und eine flüssig ist – also eine Chemikalie wie tausend andere auch. Warum aber erschaudern die meisten Menschen gerade beim Anblick von Blut und werden im schlimmsten Fall sogar ohnmächtig?

Das ist ein Überbleibsel der evolutionären Entwicklung des Menschen: Tatsächlich sorgt Blut nämlich erst dann für Schrecken, wenn es vergossen wird. So lange es sich in den Blutgefässen im Körper befindet  – oder auch sicher verpackt in einer Ampulle oder einem Konservenbeutel, lässt es sich sehr einfach als das betrachten, was es ist: eine rote Flüssigkeit.

Sobald es aus Wunden vergossen wird, signalisiert es stattdessen „Hier ist etwas gefährliches, womöglich lebensfeindliches am Werk!“ Wer einstmals beim Anblick von vergossenem Blut oder einem verwundeten Körper schnellstmöglich Reissaus nahm, hatte bessere Chancen auf ein längeres Leben und die Weitergabe seines Erbguts als jene, die in Seelenruhe abwarteten, bis der verantwortliche lebensfeindliche Umstand sie um ihr eigenes Blut erleichterte.

Spätestens seit gut 70 Jahren ist das in vielen Teilen unserer Welt anders. Blut bekommt man darin in der Regel nur noch an Unfallschauplätzen, in Operationssälen, in Fernsehkrimis oder Gruselfilmen zu Gesicht. Und bei diesen Gelegenheiten droht normalerweise keinem Beobachtenden Gefahr.

So können wir getrost unseren überflüssig gewordenen Urinstinkt überwinden und das menschliche Blut in allen Einzelheiten betrachten.

Woraus besteht das menschliche Blut?

Blut ist eine Suspension, also ein Stoffgemisch aus flüssigen und festen Bestandteilen. Ein Mensch enthält etwa 70 bis 80 ml dieses Gemischs, das normalerweise sicher in den Blutgefässen eingeschlossen ist, pro kg Körpergewicht. Ich habe damit rund 5,5l Blut.

Und wieviel Blut hast du?

Das Blut eines erwachsenen Menschen besteht in der Regel zu rund 44% aus frei beweglichen Zellen, die mit Wasser vermischt durch unsere Gefässe strömen. Dieser Anteil der Zellen am Blut wird „Hämatokrit“ („Hkt“) genannt und von Ärzten oft als Anteil an einem Liter Blut angegeben. Ein üblicher Hämatokrit beträgt also 0,44 Liter Zellen in einem Liter Blut. Mit steigendem Anteil an Zellen wird das Blut dickflüssiger, sodass zunehmend dazu neigt, die engen Blutgefässe im Körper zu verstopfen. Ein Hämatokrit von 0,6 und höher gilt deshalb als ernsthaft gesundheitsgefährdend. Ein solch hoher Anteil an Zellen im Blut kann die Folge von Flüssigkeitsverlust oder der Verabreichung von Blutzellen-Konzentraten per Infusion, beispielsweise zur Leistungssteigerung, sein und gehört damit zu den gefährlichen Nebenwirkungen verschiedener Doping-Methoden.

Blut enthält eine Reihe verschiedener Sorten von Zellen:

Blut-Zellen unter dem Elektronenmikroskop

Unter dem Elektronenmikroskop: links: rote Blutzelle, Mitte: aktiviertes Blutplättchen, rechts: weisse Blutzelle

Rote Blutzellen (auch: Rote Blutkörperchen, Erythrozyten):

Die roten Zellen machen den Löwenanteil der Zellen im Blut aus: Enthält das Blut 440 Milliliter Zellen, entfallen rund 430 Milliliter davon auf die roten Zellen, während die übrigen Zellen zusammen nur 10 Milliliter ausmachen! Deshalb kann der Hämatokrit näherungsweise als Anteil der roten Zellen am Gesamtblutvolumen angesehen werden.

Die roten Blutzellen lassen sich unter dem Lichtmikroskop  beobachten. Ihr Aussehen erinnert an winzige Gummiboote mit einem Durchmesser von etwa 7,5 Mikrometern. Anders als andere Zellen enthalten rote Blutzellen von Säugetieren keinen Zellkern und entbehren ausserdem Mitochondrien, Ribosomen und einige andere Organellen. So haben sie mehr Platz für ihr wichtigstes Werkzeug: Hämoglobin – das Protein, welches ihnen die rote Farbe verleiht und den Transport von Sauerstoff übernimmt. Würde man roten Blutzellen alles Wasser enziehen, dann würde das Hämoglobin rund 90% des Gewichts der verbleibenden Stoffe stellen. Rote Blutzellen sind also ganz auf ihren überaus wichtigen Job spezialisiert: Sie transportieren Sauerstoff.

Weisse Blutzellen (auch: Weisse Blutkörperchen, Leukozyten):

Die weissen Blutzellen sind als Teil des Immunsystems für die Abwehr von Bedrohungen für „ihren“ Körper zuständig. Wie in einer richtigen Polizeitruppe gibt es unter ihnen verschiedene Spezialisten mit an verschiedene Aufgaben angepasster Gestalt. Sie alle unterscheiden sich von den roten Zellen darin, dass sie einen Zellkern und eine Komplettausstattung zur Energieerzeugung haben. Die Energie ermöglicht den weissen Zellen zum Beispiel die Herstellung von verschiedenen „Kampfstoffen“ oder die eigenständige Fortbewegung, auch aus den Blutgefässen hinaus!

Zu den verschiedenen Spezialisten in der Körper-Polizeitruppe zählen:

Fresszellen: Sind darauf ausgelegt, Fremdstoffe und gefährliche Keime aufzunehmen (zu „phagozytieren“) und zu verdauen. In den Blutgefässen selbst findet man vornehmlich Monozyten (Vorläuferzellen, die zu Makrophagen, den eigentlichen Fresszellen ausreifen können) und neutrophile Granulozyten.

Giftschleudern: Diese Zellen können „Ausdünstungen“, also bestimmte Moleküle, die von Keimen oder Parasiten abgesondert werden, „riechen“, einer solchen Spur zu ihrem Erzeuger folgen und so gezielt in dessen Nähe Giftstoffe ausschütten, die dem Angreifer das Leben schwer machen. Dass diese Giftstoffe jedoch auch für den eigenen Körper unangenehm werden können, merken wir, wenn wir es ihretwegen mit einer Entzündung oder Allergie zu tun bekommen. Zu den Giftschleudern zählen eosinophile und basophile Granulozyten.

Aufklärungsdienst: Einige Zellen können regelrecht zu wandelnden Litfasssäulen werden. Wenn solche Zellen auf Eindringlinge oder eine entartete Körperzelle treffen, können sie „feindliche“ Merkmale (sogenannte Antigene) ihrer Oberfläche kopieren und auf der eigenen Aussenfläche zur Schau stellen, sodass andere weisse Zellen davon ablesen können, was sie zu bekämpfen haben. Zu diesen antigenpräsentierenden Zellen gehören die Monozyten, dendritische Zellen und B-Zellen.

Spezialagenten: Verschiedene Zellen können gezielt Keime oder entartete Zellen ausschalten. Dazu zählen die B-Lymphozyten, die entweder zu Plasmazellen ausreifen und Antikörper gegen eine bestimmte Bedrohung produzieren oder sich als langlebige B-Gedächtniszellen bestimmte Antigene über sehr lange Zeit merken können. Letztere sorgen dafür, dass wir eine Kinderkrankheit kein zweites Mal bekommen oder nach einer Impfung lange Zeit davor geschützt sind. Eine andere Gruppe bilden die T-Zellen, die als T-Killerzellen entartete Körperzellen (Krebszellen oder von Viren gekaperte Zellen) direkt angreifen und zum Absterben bringen oder als T-Helferzellen Antigene „lesen“ und den Einsatz von Plasma- und Killerzellen koordinieren können. Das Sondereinsatzkommando unter den Spezialagenten bilden schliesslich die „natürlichen“ Killerzellen, die darauf ausgelegt sind, die Bemühungen entarteter Zellen, sich vor den T-Killerzellen zu tarnen, zu unterwandern und auch die durchtriebensten Feinde zum Absterben zu bringen.

Blutplättchen (auch: Thrombozyten):

Blutplättchen sind kleine, normalerweise scheibchenförmige Zellen ohne Zellkern – genauer gesagt handelt es sich dabei um Zell-Bruchstücke, die von grösseren Zellen abgeschnürt werden, um dann mit dem restlichen Blut durch die Gefässe zu strömen. Blutplättchen kommen zum Einsatz, wenn ein Blutgefäss verletzt wird. Dann werden sie im Zuge der Blutgerinnung aktiviert und bilden Tentakel aus, mit welchen an Gewebeoberflächen und einander haften und die Verletzung schliessen können. Dabei setzen sie ihrerseits Stoffe frei, die die Blutgerinnung fördern.

Blutplasma:

Die verbleibenden rund 56% des Blutes bildet das Blutplasma, also grösstenteils (zu rund 90%) Wasser. Darin sind viele verschiedene Stoffe gelöst: Proteine, Ionen von Salzen und kleine Moleküle, wie Nährstoffe (Zucker, Fettbestandteile, Vitamine), Hormone, Gase und Stoffwechsel- bzw. Abfallprodukte wie Harnstoff oder Harnsäure.

Im Blutplasma können all diese Stoffe im Körper von A nach B transportiert werden, ob zur Ernährung von Zellen, zur Entsorgung durch Nieren oder Leber oder zur Kommunikation zwischen Zellen und Geweben. Darüber hinaus kann Körperwärme durch das Blut abtransportiert oder im Körper umverteilt werden, ein System aus Proteinen im Blutlasma hält die Gefässe instand (Blutgerinnung), während andere Proteine an der Immunabwehr beteiligt sind. Da all diese Vorgänge sehr empfindlich für Schwankungen des pH-Werts sind, enthält das Blutplasma einige Substanzen, die als „Puffer“ dafür sorgen, dass der pH-Wert des Blutes stets bei 7,4 liegt.

Entfernt man alle Proteine des Blutgerinnungssystems aus dem Blutplasma, wird der verbleibende Rest übrigens „Blutserum“ genannt.

Ein Farbstoff als Lastwagen: Hämoglobin und der Sauerstofftransport

Besonders auffällig ist Blut durch seine kräftig rote Farbe. Die rührt vom Hauptbestandteil der roten Blutzellen her: Dem Hämoglobin. Das ist ein Protein, das aus 4 zusammengeknäuelten Ketten zu je 141 Aminosäuren besteht. Diese Aminosäure-Ketten habe keine besondere Farbe. In jede Teilkette des Hämoglobins ist jedoch ein besonderes Molekül eingebettet: Ein Häm. Das Häm-Molekül ist ein Ring aus miteinander verknüpften Atomen, in dessen Mitte ein Eisen-, genauer gesagt ein Fe2+-Ion „eingeklemmt“ ist.

Dieses Fe2+-Ion wird von den vier Stickstoff-Atomen an der Innenseite des Rings „festgehalten“. Dazu steuern die Stickstoff-Atome jeweils ein ganzes Elektronenpaar zu einer Bindung zum Eisen bei. Sie „borgen“ dem Eisen also Elektronen, um dessen Aussenschale aufzufüllen (bei einer gewöhnlichen Elektronenpaarbindung steuern hingegen beide beteiligten Atome je ein Elektron zur Bindung bei).

Eine solche geborgte Bindung nennen die Chemiker „koordinative Bindung“. Ein Teilchen, das solche Bindungen enthält ist ein „Komplex“ bzw. eine „Koordinationsverbindung“. Die Komplexchemie – die Chemie solcher Verbindungen, erscheint womöglich deshalb komplex, weil die Bildung von koordinativen Bindungen nicht der einfachen Edelgas-Regel unterliegt, sondern eigenen Regeln folgt, welche mitunter mehr als 8 Elektronen in der Aussenschale bestimmter Atome erlauben.

Der rote Blut-Farbstoff: Strukturformel des HämDas in der Abbildung gezeigte Häm b ist dunkelrot. Innerhalb des Kohlenstoff-Rings wechseln sich Einzel- und Doppelbindungen ab. Das bedeutet, dass ein Teil der an den Bindungen beteiligten Elektronen sich relativ frei bewegen und dazu einfallende Lichtquanten „schlucken“ können, sodass das menschliche Auge das verbleibende Licht als farbig wahrnimmt. (Mehr zu solchen Farbstoffen habe ich Ostern erzählt und mehr zur Farbwahrnehmung in dieser Geschichte über das Licht). Ein Chemiker, der das weiss, kann an der Strukturformels des Häms ablesen, dass dieses Molekül wahrscheinlich farbig ist. Welche Farbe es hat, lässt sich allerdings nicht so ohne weiteres sagen. Dazu muss man sich den Stoff, der aus den Molekülen besteht, schon ansehen.

Die besonderen Regeln der Komplexchemie besagen, dass Eisen-Ionen insgesamt 6 Bindungen ausleihen können. So kann der Rest einer Aminosäure Histidin aus der Aminosäuren-Kette dem Eisen ein fünftes Elektronenpaar leihen. Dieses formt eine Bindung vom Eisen zum Histidin nach unten und bindet so den Ring samt eingeklemmtem Eisen-Ion an das Protein.

Der sechste Platz für ein geliehenes Elektronenpaar (oben) ist frei und kann eine weiteres Molekül als Last aufnehmen – idealerweise ein Sauerstoff-Molekül O2. Denn auch ein Sauerstoff-Molekül hat Elektronenpaare zu verleihen und kann so mit einem Ende an das Eisen im Häm binden. Dabei werden die Elektronen in platzsparender Weise umsortiert: Das Eisen-Ion wird somit kleiner und rutscht vollständig in die Ringebene („unbeladen“ hängt es etwas darunter). Das hintere Ende des O2-Moleküls bildet eine „Wasserstoff-Brücke“ mit einem anderen Histidin-Rest, sodass das O2-Molekül sicher am Häm angegurtet ist.

Die Umsortierung betrifft nicht nur die Elektronenschalen des Eisens, sondern auch das übrige Bindungssystem, innerhalb dessen sich Elektronen frei bewegen können. So schlucken diese Elektronen nach der Umsortierung Lichtquanten mit anderen Wellenlängen. Das beladene Häm hat damit eine andere Farbe: Häm mit gebundenem Sauerstoff ist leuchtend rot!

Mit einem elektronischen „Auge“, das Lichtquanten einer bestimmten Farbe erkennt und zählt, einem sogenannten Photometer, kann so gemessen werden, wieviel Sauerstoff in einer Blutprobe gebunden ist: Je mehr Häms im Blut mit Sauerstoff beladen sind, desto hellroter erscheint das Blut und desto mehr „hellrote“ Lichtquanten können gezählt werden. Das funktioniert sogar durch die Haut: Auf der Intensivstation wird einem Patienten ein kleiner Sensor an den Finger geclippt (dann heisst das Gerät „Pulsoxymeter“, da es auch den Puls zählt) und sendet seine Messwerte an einen Monitor, der daraufhin die „Sauerstoffsättigung“ anzeigt.

Bei einem gesunden Menschen sind nach dem Durchgang durch die Lunge, also im Blut in seinen Arterien, über 96% der Häms mit Sauerstoff besetzt: Die Sauerstoffsättigung beträgt mindestens 96%.

Und wie funktioniert das Be- und Entladen des Häms?

Die Festigkeit der Bindungen zwischen Sauerstoff- und ihren Hämoglobin-Transportern hängt von verschiedenen Faktoren ab, wie zum Beispiel dem pH-Wert, der Menge des in der Umgebung vorhandenen Kohlenstoffdioxids, der Temperatur und weiteren. Dabei ist das Hämoglobin – aus gutem Grund – so geschaffen, dass all diese Faktoren in der Lunge das Angurten von Sauerstoff-Molekülen an Hämoglobin begünstigen.

Wenn die so beladenen roten Blutzellen auf ihrem folgenden Weg in Bereiche des Körpers gelangen, in welchen gearbeitet wird  – zum Beispiel in Muskeln – treffen sie dort auf „Abfallprodukte“, die bei dieser Arbeit entstehen, wie H+-Ionen (viele H+-Ionen bedeuten einen niedrigen pH-Wert!), Kohlenstoffdioxid und Wärme. Diese Faktoren lockern die „Gurte“, welche die Sauerstoff-Moleküle am Hämoglobin halten, sodass die roten Blutzellen genau dort entladen werden können, wo Sauerstoff gebraucht wird.

Kohlenstoffdioxid wird übrigens nicht an Häm gebunden, sondern im Wasser des Blutplasmas gelöst und so in die Lungen geschwemmt, wo es in die Atemluft austritt. Zwischen gasförmigen und gelöstem Kohlenstoffdioxid besteht dabei stets ein chemisches Gleichgewicht, das unter verschiedenen Bedingungen eine unterschiedliche Lage haben kann. Wie genau das den Ein- und Austritt des Kohlenstoffdioxids in die bzw. Aus der wässrigen Lösung ermöglicht, erklärt Monsieur Le Châtelier euch am Flughafen.

Sauerstoff O2 ist dennoch nicht das einzige Molekül, das an eine Häm-Gruppe binden kann. So kann sich das Häm-Eisen seine Elektronen auch von anderen, ähnlichen Molekülen leihen, zum Beispiel von Kohlenstoffmonoxid, CO. Dieses Molekül bindet jedoch 200 mal stärker an Hämoglobin als Sauerstoff – und lässt sich folglich nicht mehr so einfach davon lösen! Einmal mit CO besetztes Hämoglobin kann also keinen Sauerstoff mehr transportieren, was Kohlenstoffmonoxid sehr giftig macht. Bei einer akuten CO-Vergiftung kann allenfalls in einer Druckkammer so viel Sauerstoff auf das Blut in den Lungen des Vergifteten losgelassen werden, dass die Sauerstoffmoleküle das CO letztlich doch von den Häms schwemmen können.

Bei starken Rauchern können übrigens dauerhaft bis 10% der Häms mit Kohlenstoffmonoxid blockiert sein, sodass ihr Blut bis zu 10% weniger Sauerstoff in den Körper transportieren kann als bei einem gesunden Menschen! Wem es also an körperlicher Fitness mangelt, der möge das Rauchen lassen, sodass sein Körper binnen der nächsten 100 Tage alle von CO gekaperten roten Blutzellen durch neue ersetzen kann.

Hands on: Wie man Blutflecken entfernen kann

Blut ist – so interessant es als Chemikalie erscheint – nicht wirklich zum Experimentieren geeignet. Zum Einen ist es dafür viel zu schade – hat es doch in unseren Blutgefässen einen so wichtigen Job zu verrichten. Zum Anderen treiben sich in unserem Blut neben den vorgestellten Bestandteilen auch verschiedene ungeladene Gäste herum: Bakterien, Viren oder gar winzige Parasiten, die mitunter Krankheiten auslösen können. Und darunter sind manche, die erst durch den Kontakt mit fremdem Blut von einem Menschen auf den anderen übertragen werden können. Daher tun wir gut daran, unser Blut in unseren Adern zu belassen.

Manchmal fordert unser Körper uns jedoch geradezu dazu heraus, uns mit unserem Blut zu beschäftigen: Ob wir uns beim Umgang mit Küchenmessern als Tolpatsch erweisen, unter spontanem Nasenbluten leiden oder einfach fruchtbare Frauen sind – nur zu schnell gerät ein Blutfleck auf Kleidung oder andere Textilien. Und dann ist guter Rat teuer, wenn es darum geht ihn wieder loszuwerden.

Deshalb gibt es hier einige Tipps zur sauberen Entfernung der lästigen roten Flecken. Und nachdem ihr spätestens jetzt die Zusammensetzung des Blutes kennt, kann ich auch erklären, warum diese Tipps funktionieren:

Frische Blutflecken zügig mit kaltem Wasser ausspülen:

Blut ist eine Suspension von Zellen in einer wässrigen Lösung. Dementsprechend lässt sich frisches, feuchtes Blut gut mit Wasser mischen und frische Blutflecken sich folglich mit Wasser ausspülen. Dabei solltet ihr in jedem Falls kaltes (d.h. höchstens raumwarmes) Wasser benutzen, da Protein-Moleküle – auch jene im Blutplasma – spätestens ab 42°C ihre Form verlieren und zu einem schwerlöslichen Aminosäurekettengewirr zusammenpappen – oder besser „gerinnen“. Das hat übrigens nichts mit der Blutgerinnung zu tun, die von funktionsfähigen Proteinen ausgeht und auch bei niedrigeren Temperaturen stattfindet, aber zu einem ähnlichen Ergebnis führt. Frische, noch nicht getrocknete bzw. geronnene Blutflecken wird man deshalb am einfachsten wieder los.

Getrocknete, schlimmstenfalls durch Wärme geronnen Blutflecken entfernen:

Dazu kann die Waschkraft von Wasser massgeblich unterstützt werden.

Stärke-Moleküle sind spiralförmige Ketten aus kleineren Zucker-Molekülen, die wie ein Schwamm wirken und Blutbestandteile förmlich „aufsaugen“ können. So lässt sich erklären, dass Stärkemehl, wenn man frische oder angefeuchtete Blutflecken damit bedeckt, die rote Farbe aufnehmen kann und sich dann abtragen lässt.

Auch Gasbläschen, zum Beispiel aus Backpulver oder Brausetabletten freigesetztes Kohlenstoffdioxid CO2, können beim Ausperlen Blutbestandteile aus Textilgewebe lösen – ganz klassisch auf mechanische Art und Weise. Damit erkläre ich mir auch die lösende Wirkung von Aspirin-Tabletten auf Blutflecken. Denn mit der gerinnungshemmenden Wirkung ihres Wirkstoffes Acetylsalicylsäure (ASS) kann das nämlich – ausser vielleicht bei sehr frischen Blutflecken – nichts zu tun haben. ASS blockiert nämlich den „Ein-„Schalter noch nicht gebrauchter Blutplättchen und macht sie damit für die Blutgerinnung unbrauchbar – bevor diese überhaupt begonnen hat!

Auch die Superwaschkraft von Tensiden kann dabei helfen, wasserunlösliche Blutbestandteile wie Fette und geronnene Proteine aus Textilien zu lösen: Gallseife erweist sich daher als wirksames Mittel zur Entfernung von Blutflecken.

Und wem das nicht reicht, der kann geronnene Proteine darüber hinaus mittels chemischer Reaktionen zerlegen. Unglücklicherweise zerlegen viele Reaktionen Textilfasern ebenso gut, sodass bei diesen Methoden besondere Vorsicht geboten ist:

Eine saure (durch Zitronensäure oder Essig erzeugte) oder alkalische (zum Beispiel durch Ammoniaklösung geschaffene) Umgebung kann die Zersetzung von Proteinen und anderen Kettenmolekülen fördern.

Wasserstoffperoxid, H2O2, geht mit vielen anderen Stoffen Redox-Reaktionen ein und kann beispielsweise Farbstoffmoleküle zerlegen, weshalb es als Bleichmittel beliebt ist – auch wenn es um Blutflecken geht.

Die Natur hat überdies verschiedene Proteine geschaffen, die andere Proteine oder sonstige Kettenmoleküle in Stücke schneiden können. Solche Enzyme sind heutzutage in vielen Waschmitteln oder Fleckenentfernern enthalten. Auch dank ihnen bekomme ich auch getrocknete Blutflecken mit einem Vollwaschmittel sowohl bei 30°C als auch bei 60°C in der Waschmaschine gut entfernt.

Und was empfindest du beim Anblick von Blut? Hast du vielleicht eine ganz eigene „blutige“ Geschichte erlebt? Welches ist deine persönliche Waffe gegen Blutflecken auf Textilien?

Tenside – von dieser Stoffklasse hat bestimmt jeder schon einmal irgendwo gehört – aber weiss denn auch jeder, was Tenside eigentlich sind?

Auf meinen Rundgang durch den Haushalt entdecke ich sie überall: Auf der Packung meines Universal-Waschmittels heisst es „enthält 5 – 15% anionische Tenside sowie < 5% nichtionische Tenside. In meinem Handgeschirrspülmittel sind es sogar 15 bis 30% anionische Tenside und < 5% nichtionische und amphotere Tenside.

Aber Tenside finden sich auch andernorts, zum Beispiel in Lebensmitteln wie Kakaopulver für Trinkschokolade oder in Unkrautvernichtern, die auch den berüchtigten Wirkstoff Glyphosat enthalten.

Was hinter der Bezeichnung „Tensid“ jedoch steckt, mag überraschen: Sie steht für eine Gruppe von Chemie-Produkten, die schon seit rund 5000 Jahren von Menschen genutzt werden! Wie der Chemische Reporter berichtet, haben die Sumerer nämlich vor ebenso langer Zeit schon Seife hergestellt und verwendet. Und Seife ist ein Stoff, wenn nicht der Stoff, der aus Tensiden besteht.

 

Wie man Seife macht

Die Ursprünglichsten der Tenside lassen sich vergleichsweise einfach herstellen – nämlich aus pflanzlichen Fetten. Bei Fetten – unter Chemikern auch Triglyzeride genannt – handelt es sich nämlich um Ester des Glyzerins mit verschiedenen Fettsäuren. Und Verbindungen der Gruppe der Ester können ziemlich einfach zerlegt werden, zum Beispiel durch Zugabe einer Base.

Eine Base ist ein Stoff, der H+-Ionen aufnehmen kann, die er zum Beispiel Wassermolekülen „entwenden“ kann. Das führt dazu, dass Basen in Wasser häufig OH-Ionen erzeugen, falls sie solche nicht selbst schon mitbringen:

Calciumoxid – besser: Das Oxid-Anion – ist eine Base und reagiert mit Wasser zu zwei Hydroxid-Ionen. Das Calcium-Ion bleibt dabei in Wasser gelöst zurück.

Calciumoxid und weitere wasserlösliche Oxide der Alkali- und Erdalkalimetalle finden sich in Pflanzenasche, sodass die Asche basisch reagiert. Und das haben schon die findigen Sumerer zu nutzen gewusst (obwohl die noch nicht wussten was Basen sind), indem sie Asche zu warmen Pflanzenfetten gaben und eine weiche, aber formfeste Masse mit erstaunlichen Eigenschaften erzeugten: Seife. Heutzutage wird Seife noch genauso hergestellt – nur verwendet man anstelle der Asche Natriumhydroxid (NaOH), ein Salz, das mit Wasser die stark basische Natronlauge bildet.

 

Reaktionsschema zur Seifenherstellung : Wie Tenside seit 5000 Jahren gemacht werden

Seifenherstellung: Reaktion von Fetten mit einer Base zu Glyzerin und Fettsäure-Anionen

 

Wer Seife selbst herstellen möchte, findet hier ein Rezept dafür. Natriumhydroxid und Natronlauge sind jedoch stark ätzende Substanzen, die mit gebührender Vorsicht verwendet werden sollten!

Einfache Seife ist also ein Gemisch aus Glyzerin und den Anionen der verschiedenen Fettsäuren (eine gute Seife enthält praktisch keine Hydroxid-Ionen mehr, was erreicht wird, indem die Base bei der Herstellung etwas unterdosiert zum Einsatz kommt, sodass sie während der „Reifezeit“ der Seife von mehreren Wochen praktisch vollständig aufgebraucht wird). Und diese Fettsäure-Anionen sind ganz besondere Moleküle: Sie wechselwirken nämlich auf zweierlei Art mit ihrer Umgebung!

 

Mischung oder Trennung: Alles eine Frage der Anziehung

Die Art und Weise, wie ein Molekül mit anderen Molekülen in seiner Nachbarschaft wechselwirkt, hängt von der Verteilung der Elektronenladung im Molekül ab. Wenn diese nämlich ungleichmässig ausfällt, können Anhäufungen von negativer und positiver Ladungen in verschiedenen Molekülen einander anziehen. Und solche Anhäufungen gibt es, weil verschiedene Atomsorten ihre Elektronen (einschliesslich derer, die an Elektronenpaar-Bindungen beteiligt sind) unterschiedlich stark zu sich hinziehen. So entstehen polare, d.h. unsymmetrische Bindungen. Wie das im Einzelnen vor sich geht und welche Folgen das hat, könnt ihr in der Geschichte um die 13 Vitamine nachlesen.

Festzuhalten ist: Wenn in einem Molekül räumlich getrennte Anhäufungen von Elektronenladung entstehen (man spricht dann von einem Dipol-Molekül), können sich diese Anhäufungen und Bereiche mit einem Mangel an Elektronenladung gegenseitig anziehen. Und wenn Moleküle einander anziehen, lassen die Stoffe, welche aus ihnen bestehen, sich mischen.

Wasser ist der vielleicht bekannteste Stoff, der aus Dipol-Molekülen besteht. Und Stoffe, die sich mit Wasser mischen lassen, die also ebenfalls aus Dipol-Molekülen bestehen, nennt man hydrophil (griechisch für „wasserliebend“).

Auch in vielen organischen Molekülen gibt es solch unregelmässige Ladungsverteilung. Dazu zählen die sogenannten Carbonsäuren – solche Moleküle, die eine Carboxyl-Gruppe beinhalten.

essigsaeure

Essigsäure, eine einfache Carbonsäure, mit Anhäufungen von Ladung

Essigsäure ist eine einfache Carbonsäure. Die Carboxyl-Gruppe enthält Kohlenstoff- und Sauerstoff-Atome, auf welche die Elektronenladung nicht gleichmässig verteilt ist. So können die Essigsäure-Moleküle einander, aber auch andere Moleküle mit ungleichmässiger Ladungsverteilung anziehen: Essigsäure ist deshalb sehr gut mit Wasser mischbar!

Moleküle aus ähnlich „starken“ Atomen, deren Elektronenladung weitgehend gleichmässig verteilt ist, können keine Dipole sein. Und trotzdem ziehen sie einander an – auf eine andere Weise, die sich massgeblich von der Anziehung zwischen Dipolen unterscheidet. Moleküle mit gleichmässiger Ladungsverteilung lassen sich deshalb gut miteinander mischen, jedoch nicht Molekülen, welche die Anziehung zwischen Dipolen bevorzugen!

Da die Fette zu den „gleichmässigen“ Molekülen zählen, nennt man Stoffe aus solchen Molekülen lipophil (griechisch „fettliebend“).

 

Ein einfaches Modell für ein vielseitiges Molekül

Das Besondere an Fettsäure-Anionen ist: Sie sind sowohl hydrophil als auch lipophil! Das heisst allerdings nicht, dass sie sich gleichermassen gut mit Wasser und mit Fetten mischen lassen. Es sind vielmehr unterschiedliche Abschnitte der Moleküle, die entweder hydrophil oder lipophil sind.

So heissen Fettsäuren wie sie heissen, weil sie Carbonsäuren sind. Das heisst, ein Fettsäuremolekül enthält eine Carboxylgruppe, die ein H+-Ion abgeben und zur Carboxylat-Gruppe werden kann, dank welcher die Fettsäure zum Fettsäure-Anion wird. Und ein Anion enthält eine Extremform der Anhäufung von Elektronenladung: Diese Anhäufung ist so gross, dass ihre elektrische Ladung derer eines oder mehrerer ganzer Elektronen entspricht (Die Ladungs-Anhäufungen in Dipol-Molekülen sind stets kleiner als die Ladung eines Elektrons!).

dissoziation_carbonsaeure

Und Carboxylgruppen sind (wie Carboxylat-Gruppen auch) hydrophil.

Allerdings befindet sich die Carboxylgruppe einer Fettsäure am Ende einer langen Atom-Kette aus Kohlenstoff- und Wasserstoff-Atomen. Und die sind in Sachen Elektronen-Anziehen nahezu gleich stark. Deshalb sind solche Kohlenwasserstoff-Ketten lipophil.

Während die Carboxylatgruppe eines Fettsäure-Anions also mit Wasser mischbar ist, ist seine Kohlenwasserstoff-Kette mit Fett (und nicht mit Wasser) mischbar. Und beide sind fest miteinander verbunden! Solch ein Molekül gleicht damit einer Schlange: Der Kopf beisst, und der Schwanz kann sich um einen Ast winden. Beide zusammen ergeben ein Tier, das in Bäumen Beute jagen kann.

Oder noch einfacher: Die Carboxylatgruppe sei wie der Kopf eines Streichholzes, der sich an einer Reibefläche entzünden lässt, während die Kohlenwasserstoff-Kette den Schaft zum Festhalten der Flamme bildet.

Streichholzmodell für Tenside

Carboxylat-Anion als „Streichholz“: Der rote Kopf ist wasserliebend, der blaue Schaft ist fettliebend.

 

Damit brauchen wir uns nicht länger mit Atomen, Atomgruppen und ungleichmässig verteilter Elektronenladung herum zu schlagen. Es genügt zu wissen: Die Streichholz-Köpfe mischen sich mit Wasser, die Streichholzschäfte mit Fett und anderen lipophilen Stoffen. Deshalb heissen solche „Streichholz“-Teilchen amphiphil – beides liebend – oder auch „Tensid“.

Die Fettsäure-Anionen, deren „Köpfe“ also eine negative Ladung tragen, gehören zu den „anionischen“ Tensiden. Doch auch Fettsäuren, welche ihr H+-Ion nicht abgegeben haben, sind amphiphil. Sie gehören mangels einer ganzen elektrischen Ladung zu den nichtionischen Tensiden. Ebenso gibt es kationische Tenside mit einer positiven ganzen Ladung am Kopf, und schliesslich amphotere Tenside, die sowohl eine positive als auch eine negative Ladung am Kopf tragen.

 

Wie Seife funktioniert: Streichholz-Tenside und Grenzflächen

Stellt man ein Gefäss mit Wasser an der Luft, hat man zwei Stoffe oder Stoffgemische direkt nebeneinander, die unterschiedlich wechselwirken: Wasser ist hydrophil, während die meisten Luftmoleküle (Luft besteht hauptsächlich aus Stickstoff, N2 und Sauerstoff, O2) lipophil sind. Folglich wollen beide nicht viel miteinander zu tun haben und bilden ihre eigenen Cliquen. Wassermoleküle halten sogar so stur zusammen, dass sie die meisten Luft-Moleküle strikt draussen halten.

Teilchen, die aus der Luft ins Wasser oder umgekehrt passieren möchten, müssen damit Auflagen erfüllen und Mühen auf sich nehmen wie wir mancherorts, wenn wir eine Landesgrenze überschreiten wollen. Dementsprechend wird solch eine trennende Fläche zwischen Luft und Wasser (aber auch zwischen anderen Stoffen) Grenzfläche genannt.

Das Bollwerk, das die zusammenhaltenden Wassermoleküle an der Wasseroberfläche bilden zeigt sich uns als „Oberflächenspannung“: Es ist so fest, dass kleine Tiere wie Wasserläufer darauf laufen können!

Wenn man Seife (Tenside) ins Wasser gibt, sortieren die sich in der bequemsten Ausrichtung – an der Grenzfläche zwischen Luft und Wasser, sodass die hydrophilen Köpfe ins Wasser und die lipophilen Schwänze in die Luft weisen! Damit stören sie den Zusammenhalt der Wassermoleküle an der Oberfläche so empfindlich, dass jeder Wasserläufer auf Seifenwasser umgehend untergehen würde.

Streichholzmodell: Tenside an einer Grenzfläche

Das könnt ihr ganz einfach ausprobieren – aber bitte nicht mit Tieren! Als Ersatz für einen Wasserläufer schwimmt auch eine eiserne Büroklammer (seiner Dichte wegen sollte Eisen sofort sinken!) auf Wasser, wenn man sie vorsichtig darauf legt. Sobald man jedoch Seife in eine Schale Wasser gibt, auf welchem eine Büroklammer schwimmt, wird diese umgehend untergehen.

Die Oberfläche des Wassers in einem Behälter hat jedoch eine begrenzte Grösse. Wenn man genügend Seife hineingibt, wird sie irgendwann gänzlich von Tensiden besetzt sein, sodass die Übrigen keinen Platz mehr finden werden. Diesen ausgegrenzten Molekülen bleibt nichts anderes übrig, als Zuflucht in „Selbsthilfegruppen“ zu suchen: Sie lagern ihre Schwänze so zu einer Kugel zusammen, dass alle Schwanzenden auf deren Zentrum weisen. Damit befinden sich alle Köpfe aussen – dem Wasser zugewandt – sodass sich diese Tensid-Kugeln wunderbar mit dem Wasser mischen können, während ihr lipophiler Anteil in ihrem Inneren verborgen bleibt. Solche Kugeln oder ähnlich abgeschlossenen Tensid-Gebilde werden von Chemikern auch Mizellen genannt.

Streichholzmodell: Tenside bilden eine Mizelle

 

Das Geheimnis der Superwaschkraft

Die Fähigkeit zur Bildung von Mizellen ist auch das Geheimnis der Waschkraft von Seife. Jeder, der schon einmal versucht hat, eine fettige Pfanne bloss mit Wasser zu reinigen, wird festgestellt haben, dass das Fett sich von Wasser reichlich wenig beeindruckt zeigt und kaum von der Stelle weicht. Taucht man die Pfanne samt Fett jedoch in seifenhaltiges Wasser, eröffnen sich für die Tenside darin ganz neue Möglichkeiten:

Jetzt können sich die lipophilen Schäfte nämlich an die Oberfläche der Fettpartikel anlagern und diese dicht an dicht besetzen. So verschaffen die Tenside den Fetten eine mit Wasser mischbare Oberfläche aus „Streichholzköpfen“. Das Ganze geht sogar so weit, dass die Tenside sich regelrecht zwischen Fettpartikel und Pfannenoberfläche drängen, sodass die Partikel bald abgelöst werden und als vollständig geschlossene „Mizellen mit was drin“ durch das Wasser treiben und weggespült werden können!

Streichholzmodell : Die Super - Fettlösekraft der Tenside

 

Tenside als Spielzeug

Nicht nur für die Waschkraft von Seife zeichnen Tenside verantwortlich, sondern auch für ein seit Generationen beliebtes Spielzeug: Seifenblasen. Wenn man die kauft, erhält man meist einen handlichen Kunststoffzylinder mit einer Seifenlösung und einem kleinen Ring am Stab zum Hineintauchen. Wenn man den Ring aus der Lösung nimmt, spannt sich darin ein dünner Film aus Seife, der sich, sobald man sanft hineinbläst, zu einer Blase ausdehnt, abschnürt und in schillernden Regenbogenfarben langsam durch die Luft davontreibt.

Aber woraus bestehen die ätherischen, fast gewichtslos wirkenden Seifenblasen eigentlich?

Hauptsächlich aus Tensiden, die eine besonders trickreiche Anordnung einnehmen! Ausserhalb und innerhalb einer Seifenblase befindet sich nämlich Luft, sodass es sich anbietet, an der Innen- und Aussenfläche einer Seifenblase Schwänze zu haben. Tatsächlich ordnen sich die Tenside dicht an dicht zu einer doppelten Schicht, wobei alle Schäfte der inneren Schicht nach innen und jene der äusseren Schicht nach aussen weisen. Folglich weisen alle Streichholzköpfe in die Mitte zwischen den Schichten. Und da bietet es sich an, gleich noch eine sehr dünne Schicht Wassermoleküle zwischendrin einzuschliessen, damit es zwischen einzelnen Ladungen der gegenüberliegenden Köpfe nicht zu Abstossung kommt.

Streichholzmodell: Tenside formen eine Seifenblase

Seifenblase, dargestellt als Streichholzmodell (Nach: „Schaumbläschen“ by Roland.chem [CC-BY-SA-3.0], via Wikimedia Commons)

 

Die Anziehung zwischen den geordneten Tensiden ist damit so gross, dass sie selbst in bewegter Luft zu einem hauchdünnen, aber sichtbaren Film zusammenhalten und die eingeschlossene Wasser-Schicht tragen können….fast zumindest. Denn wer Seifenblasen genau beobachtet, wird feststellen, dass sie in der Regel zerplatzen bevor sie ganz zu Boden gleiten oder auf ein Hindernis treffen. Und wer besonders grosse Seifenblasen macht und noch genauer hinschaut (oder eine Zeitlupenkamera sein Eigen nennt), mag bemerken, dass die Blasen zuerst oben aufreissen, ehe sie ganz zerfallen.

Das zeigt uns, dass die Schwerkraft am Ende doch gewinnt. Früher oder später werden die Wassermoleküle der Zwischenschicht nämlich doch zu schwer und in der Seifenblassen-Hülle nach unten gezogen. Dort sammeln sie sich an, während die Blase im oberen Bereich zunehmend trocken fällt – bis sich die Tensid-Köpfe schliesslich berühren und abstossen. So gerät die geniale Streichholz-Doppelschicht gänzlich aus den Fugen und reisst auseinander. Die einstmals schillernde Blase wird wieder zu einem schlichten, ungeordneten Tropfen Seifenlösung, der eben dort landet, wo die Seifenblase ihr kurzes Dasein beendet hat.

 

Tenside als Bausteine des Lebens

Auch in und um Lebewesen gibt es zahlreiche mehr oder minder überwindbare Grenzflächen wie jener zwischen Luft und Wasser. So atmen Landsäugetiere wie wir Menschen Sauerstoff-Moleküle, indem wir ihnen ermöglichen, in unseren Lungenbläschen aus der Luft hinaus und in unsere wasserhaltige Blutbahn einzutreten. Wasserlebewesen bewerkstelligen das Gleiche in ihren Kiemen, die dafür geschaffen sind, im Wasser gelösten Sauerstoff in den Körper hinein zu lassen.

Um mit solchen und vielen anderen Grenzflächen umzugehen, hat sogar das Leben seine ganz eigenen Tenside geschaffen! Diese Moleküle unterscheiden sich in vielerlei Hinsicht von Seife, können jedoch ebenfalls in einen hydrophilen Kopf und einen lipophilen Schwanz gegliedert werden. Aus solchen Tensiden besteht zum Beispiel die Aussenhülle von Körperzellen: Dabei handelt es sich um eine doppelte Schicht aus dicht gepackten „Streichhölzern“, deren Schäfte allesamt nach innen und die Köpfe nach aussen weisen – also quasi um eine umgekehrte Seifenblase.  Das ist praktisch, weil sowohl das Innere der Zelle mit Wasser (und vielem anderen) gefüllt ist, als auch Wasser die Zellen im Körper umgibt. Da die Hülle der Zellen jedoch innendrin lipophil sind (dort befinden sich die Tensid-Schäfte!), können sich das Wasser draussen und das Wasser drinnen nicht einfach vermischen! Was hydrophil ist und in die Zelle hinein- oder aus ihr hinaus soll, muss durch speziell dafür vorgesehene „Fenster-“ oder „Tunnel-„Moleküle hindurch.

 

Wann Tenside zum Problem werden

Der Umstand, dass viele Lebewesen sich hervorragend mit den Grenzflächen zwischen ihnen selbst und ihrem Lebensraum „draussen“ arrangiert und allerlei Tricks entwickelt haben, um ihrer Umgebung Nahrung und Sauerstoff zu entnehmen, führt dazu, dass viele Tenside, die wir erfunden haben um ebensolche Grenzflächen zu zerstören (um zum Beispiel Fettreste mit Wasser lösen zu können), für solche Lebewesen giftig sind. Das gilt besonders für Wasserlebewesen, welche die dichten Grenzflächen ihres Lebensraums in vielerlei Hinsicht zum Leben brauchen.

Deshalb müssen die Seifen und anderen Tenside, die wir tagtäglich verwenden, erst abgebaut werden, bevor sie in die Umwelt gelangen dürfen! Das besorgt zum Beispiel ein Klärwerk, in dem Bakterien für genau diesen Job „angeheuert“ werden. Diese Bakterien, die sich im Klärbecken über Tenside hermachen, haben zum Beispiel die zwei folgenden Möglichkeiten, die „Streichholz“-Moleküle unschädlich zu machen:

  1. Sie trennen den Streichholzkopf vom Schaft. Damit bleiben zwei Teilmoleküle, eines wasser- eines fettliebend, die jedes für sich ihre Lieblingsumgebung suchen und keinen Schaden mehr anrichten können.
  2. Sie verpassen dem Schaftende einen zweiten Kopf. So entsteht ein zweiköpfiges „Streichholz“, das nach beiden Enden wasserliebend ist und somit für das Zusammenspiel der Tenside nicht mehr brauchbar ist.

Wer also ein nützliches Tensid „erfinden“ möchte, tut gut daran, nicht nur über die mögliche Giftigkeit des Tensids nachzudenken. Wenn nämlich dessen Abbauprodukte, welche die Bakterien im Klärwerk daraus herstellen, für sich aus irgendeinem Grund ebenso giftig sind, würde die Entsorgung der Tenside damit ihres Sinnes beraubt.

So sind die Seifen unseres täglichen Gebrauchs wohl für viele Wasserlebewesen gefährlich, aber auch für den Abbau im Klärwerk geschaffen. Aus diesem Grund gehört Seifenwasser unbedingt in einen Haushaltsabfluss entsorgt, der an ein Abwassersystem und damit möglichst direkt an eine Kläranlage angeschlossen ist.

Innerhalb eines Gebäudes ist das hierzulande kein Problem. Ein Auto passt jedoch in den seltensten Fällen ins Haus, und das Seifenwasser samt Öl- und anderen Resten beim Autowaschen einfach in die Gegend laufen zu lassen erachten viele wichtige Lebewesen in Wasser und Boden als ganz schlechte Idee (und ist je nach Art des vorhandenen Entwässerungssystems sogar verboten!). Deshalb verdient jedes Auto, das nach einer Wäsche mit Seife verlangt, eine Fahrt durch eine Autowaschanlage, die eine umweltschonende Entsorgung ihrer Abwässer übernimmt.

Richtig problematisch wird es damit erst, wenn Tenside zum Einsatz kommen, um Unmischbares zu mischen, das dazu bestimmt ist, in der Landschaft verteilt zu werden. So stecken in Pflanzenschutzmitteln, die (nicht nur) den berüchtigten Wirkstoff Glyphosat enthalten, in der Regel auch Tenside. Und die gelangen beim Spritzen von Pflanzen auf Äckern und in Gärten ungehindert in die Umwelt, was, wie Sebastian auf Nullius in Verba schreibt der Abschnitt über die Tenside findet sich am Schluss des Beitrags) , die Problematik des eigentlichen Glyphosats, letztlich in den Schatten stellt!

 

Fazit

Tenside gehöhren in Form von Seife zu den am längsten von Menschen genutzten Chemikalien der Welt. Ihre Fähigkeit auf zweierlei Weise mit ihrer Umgebung zu wechselwirken und Grenzflächen durchlässig zu machen macht sie zu starken und vielseitigen Helfern im Alltag. Wo Grenzflächen allerdings lebensnotwendig sind, werden Tenside schnell zur Gefahr. So nützlich ihre Superwasch- und mischkraft auch ist, setzt Seife und andere Tenside mit Bedacht ein und geniesst ihren Nutzen ohne bitteren Beigeschmack!

Und wo begegnen euch Tenside in eurem Alltag?

Dieser Artikel ist ein Beitrag zum ScienceBlogs Blog-Schreibwettbewerb 2016. Deshalb gibt es ihn für einmal auswärts zu lesen – und eure Mitwirkung ist gefragt!

 

Letztes Jahr erhielt ich von meiner Schwägerin ein duftiges Weihnachtsgeschenk: Ein Fläschchen mit einer Duft-Essenzmischung. „Diese Essenzen lassen aufatmen“ steht darauf, und aus 100% naturreinen ätherischen Ölen soll der Inhalt bestehen. Wunderbar! Das natürliche Aroma von Wald, Kräutern und Gewürzen für das eigene Zimmer, ganz ohne Zusatzstoffe – mag so mancher denken, der von der Sanftheit und Verträglichkeit der Natur überzeugt sein mag. Und der das Fläschchen noch nicht umgedreht hat.

Auf dessen Rückseite prangen nämlich gleich vier rotumrandete Rauten mit alarmierenden Symbolen darin, wie man sie von Chemikalien-Verpackungen her kennt: Die GHS-Gefahrensymbole für „entzündlich“, „gesundheitsschädlich“, „Gefahr“ und „umweltgefährdend“. Gefahrstoffe in der naturreinen Essenzmischung? Was ist da noch drin nebst den natürlichen Duftstoffen? Bin ich etwa einem Skandal auf der Spur….?

 

Warum Naturstoffe und gefährliche Chemie in einer Flasche keinen Widerspruch darstellen, könnt ihr in meinem Wettbewerbsbeitrag auf Astrodicticum Simplex nachlesen und eure eigene Stimme beim Leser-Voting hinterlassen. Dabei könnt ihr sogar etwas gewinnen! Die Einzelheiten zu Ablauf und Abstimmung sind am Anfang des Wettbewerbsbeitrags verlinkt!

Feuerwerk - Tradition oder Umweltsünde?

Der Legende nach gründeten Vertreter der drei Ur-Kantone Schwyz, Uri und Unterwalden am 1. August 1291 die Eidgenossenschaft, aus welcher sich die heutige Schweiz entwickelt hat. Deshalb wird der „Geburtstag der Schweiz“ jedes Jahr mit einem Nationalfeiertag voller Bräuche und Traditionen begangen.

Eine dieser Traditionen scheidet jedoch selbst in der Schweiz, ebenso wie an Silvester in Deutschland, Österreich und anderen Ländern, die Geister: Das Feuerwerk. Ähnlich wie zum Jahreswechsel in den Nachbarländern (aber auch in der Schweiz selbst), brennen die Schweizer am Abend ihres Nationalfeiertags traditionell im privaten Rahmen Feuerwerk ab. Im Unterschied zu Silvester jedoch nicht vornehmlich innerhalb von 15 bis 30 Minuten nach Mitternacht, sondern über den ganzen Abend verteilt.

Umso mehr Zündstoff liefert dieses Geburtstagsfeuerwerk auch Tierbesitzern, Lärmempfindlichen oder Atemwegserkrankten, für welche Tage wie diese nicht selten zur Belastung werden. Um den Bedürfnissen sowohl der Anhänger der Tradition als auch der Belasteten gerecht zu werden, hat das Schweizer Bundesamt für Umwelt (BAFU) reichlich Zahlen und Studien rund um Feuerwerk und seine Auswirkungen auf die Umwelt gesammelt, die auch Grundlage für diese Geschichte um die Chemie in Feuerwerkskörpern und ihre Bedeutung für die Umwelt sind.

 

Eine Schweizer Tradition: Zahlen zum Feuerwerk – nicht nur am Nationalfeiertag

Das BAFU schätzt, dass in der Schweiz in jüngeren Jahren (2009 bis 2013) jährlich rund 2000 Tonnen Feuerwerkskörper zum Einsatz kommen – der Löwenanteil davon am 1. August und an Silvester. Dabei besteht solch ein Feuerwerkskörper jedoch zu rund 75% aus Hüllenmaterial, also Pappe, Papier, Ton oder Kunststoff, sodass tatsächlich „nur“ 500 Tonnen eigentliches Feuerwerksmaterial (pyrotechnische Sätze) abgebrannt werden.

Die Hälfte davon, also rund 250 Tonnen, machen Treibladungen aus Schwarzpulver aus, die andere Hälfte sogenannte Effekt-Ladungen, welche unter anderem verschiedene Metalle zur Erzeugung farbenfroher Leuchterscheinungen enthalten.

 

Wie funktioniert ein Feuerwerkskörper/eine Rakete?

Feuerwerks-Rakete

Die klassische zylindrische Feuerwerks-Rakete ist „zweistufig“ aufgebaut: Die untere Stufe enthält Schwarzpulver als Treibladung sowie die Anzündung („Lunte“).

Schwarzpulver ist ein Gemisch, in der Regel aus 75% Kaliumnitrat (KNO3), 15% Holzkohlepulver (Kohlenstoff) und 10% Schwefel. Bei Zündung zersetzt sich das Kaliumnitrat und liefert in der von der Aussenluft abgeschlossenen Treiberhülse reichlich Sauerstoff für die Verbrennung der übrigen Komponenten. Dabei entstehen rasch grosse Mengen verschiedener Gase, die durch die Düse gebündelt nach unten austreten und die Rakete mittels Rückstoss in die Luft befördern. Der Leitstab sorgt dabei für eine ruhige Flugbahn der Rakete.

Schwarzpulver in „natürlicher“ Umgebung enthält immer etwas Feuchtigkeit (Wasser, H2O). Beim Entzünden des Gemischs entstehen aus einer kleinen, kompakten Menge von Feststoffen eine grosse Menge von Gasteilchen (Stickstoff – N2, Kohlenstoffdioxid – CO2, Kohlenstoffmonoxid – CO – reagiert mit Sauerstoff weiter zu CO2, Methan – CH4, Schwefelwasserstoff – H2S, Wasserstoff – H2 – reagiert mit Sauerstoff weiter zu Wasserdampf, H2O), die von Natur aus Platz einnehmend und mit hoher Bewegungsenergie (entspricht Wärme!) auseinanderstreben.

Der wesentlich kleinere Anteil der Reaktionsprodukte sind feste Salze (Kaliumcarbonat – K2CO3, Kaliumsulfat – K2SO4, Kaliumsulfit – K2SO3, Kaliumsulfid – K2S, Kaliumthiocyanat oder -rhodanid – KSCN (im Übrigen wie alle anderen genannten Feststoffe ungefährlich), Ammoniumcarbonat – (NH4)2CO3, und Reste von Kohle – 〈C〉 und Schwefel – 〈S〉, die zur Entstehung von Rauch beitragen.

Die schnelle Freisetzung von Gasen verleiht Sprengstoffen wie dem Schwarzpulver ihre Sprengkraft. Triebkraft des Ganzen ist jedoch das Streben der beteiligten Stoffe nach Redox-Reaktionen, also dem Austausch von Elektronen: Bestandteile des Schwarzpulvers wie Kohlenstoff und Schwefel werden oxidiert – sie geben Elektronen an Sauerstoff ab, welcher mit der Aufnahme dieser Elektronen reduziert wird. Vergleichbares geschieht beim Rosten von Eisen und ist in der Geschichte zur Rostparade genauer beschrieben – nur um vieles gemächlicher als bei einer Sprengstoff-Explosion.

 

Während des Flugs verhindert die Trennladung eine vorzeitige Zündung der zweiten Stufe durch das verbrennende Schwarzpulver. Erst die Überzündung im oberen Teil der Treiberhülse ermöglicht nach dem Ausbrennen der Treibladung die Zündung der Zerlegerladung, welche die zweite Stufe der Rakete – die Effekthülle samt Effektladung – auseinander sprengt. Die dabei gezündete Effektladung leuchtet, während sie auseinandergerissen wird, farbig auf und erscheint uns für wenige Sekunden als bunte Sternenkaskade am Himmel.

Damit das funktioniert, enthält die Effektladung ihrerseits sauerstoffliefernde Stoffe, also Nitrate (wie Kaliumnitrat – KNO3) oder/und Perchlorate (wie Kaliumperchlorat – KClO4), und Metalle, die sehr hell und sehr heiss verbrennen – also Magnesium oder Aluminium, oder beide als Legierung „Magnalium“.

Die Verbrennung dieser Metalle geht mit Temperaturen bis 2000°C (!) einher. In einem solchen Inferno können chlorhaltige organische Verbindungen, wie der bekannte Kunststoff Polyvinylchlorid (PVC), Chlor-Atome abgeben, die mit den farbgebenden Metallen neue Verbindungen bilden, welche angeregt von der in den explosionsartigen Reaktionen freigesetzten Energie farbig  am Himmel leuchten (wie das Leuchten vor sich geht, erzählt die Geschichte um Farben, Licht und Glanz).

Dabei gibt zum Beispiel Barium grünes Licht, Strontium rotes, Kupfer blaues und Natrium orangegelbes Licht. Und ebenso entstehen im Feuer der Raketen-Explosion zahlreiche Nebenprodukte.

 

Welche Gefahren gehen von Feuerwerkskörpern aus?

Für Menschen:

Unfall-/Verbrennungsgefahr

Feuerwerkskörper brennen sehr, sehr heiss (wie bereits erwähnt mit bis zu 2000°C – während selbst ein guter Pizzaofen gerade einmal etwa 400°C zustande bringt): Das ist notwendig, um die gewünschten Leuchteffekte zu erzeugen. Deshalb gibt es zu Feuerwerkskörpern, die den Vorgaben der EU entsprechen, stets eine Bedienungsanleitung, die ausweist, wie sie zu handhaben sind, damit man sich verbrennt oder schlimmere Verletzungen erleidet. Deshalb gehören Feuerwerkskörper, vor allem solche mit Leuchteffekt, ebenso wenig in die Hände von (unbeaufsichtigten) Kindern wie in vollbesetzte Fussballstadien – denn auch die als „Pyros“ berüchtigten bengalischen Feuer erreichen derart hohe Temperaturen, bei denen nahezu alles zerstört wird, was man in einem Station finden kann: Menschen, Kleidung, Kunststoffe und vieles mehr. So stellen  Feuerwerkskörper gerade im dichten Gedränge eine erhebliche Verletzungsgefahr dar!

Gehörschädigungen

Feuerwerkskörper sollen laut sein – die Bedienungsanleitung gibt an, wie sie zu verwenden sind, damit sie nicht zu laut werden (Abstand einhalten!): Trotzdem können schnell Grenzwerte überschritten werden – wie Messungen zeigen auch bei Grossfeuerwerken von professionellen Feuerwerkern. Gehörschutz ist daher für Feuerwerker – professionelle wie private dringend, für ihre Zuschauer aber ebenfalls empfohlen. Ich selbst trage bei Grossfeuerwerken, die ich im Freien beobachte, auch wenn sie scheinbar weit entfernt auf Booten auf dem Zürichsee gezündet werden, stets Ohrstöpsel.

Belastung durch Chemikalien: Feinstaub!

Die aus der Sicht des BAFU einzig beachtenswerte Belastung mit Chemikalien aus Feuerwerkskörpern ist die kurzfristige Erzeugung von Feinstaub beim Abbrennen: Aus den 500 Tonnen jährlich verfeuerter pyrotechnischer Sätze werden schätzungsweise rund 360 Tonnen der Sorte Feinstaub, die in unsere Lungen gelangen kann (PM10 genannt) , freigesetzt (bis in unsere Lungenbläschen gelangt davon wiederum ein Bruchteil). Das klingt nach viel, erscheint aber weitaus nebensächlicher, wenn man die Menge dieses Feinstaubs dagegen stellt, die während eines Jahres insgesamt in der Schweiz durch Strassenverkehr und andere Quellen erzeugt wird: 19’000 Tonnen! Der eher kleine feuerwerksbedingte Anteil daran wird jedoch vornehmlich in zwei Nächten freigesetzt: Am Abend des 1. Augusts und in der Silvesternacht. So wird es nicht verwundern, dass in den 24 Stunden rund um ebendiese Nächte in besiedelten Gebieten die vorgeschriebenen Grenzwerte für den Feinstaubgehalt der Luft überschritten werden. Das wiederum kommt allerdings auch an anderen Tagen ziemlich häufig vor – in allen Gebieten der Schweiz bis auf das sehr dünn besiedelte Hochgebirge mindestens 5, in städtischen Gebieten bis zu 30 mal im Jahr.

So stellt der Feuerwerks-Feinstaub denn auch für gesunde Menschen keine nachweisbare Belastung der Atemwege dar. Anders sieht das bei Menschen mit bereits bestehenden Atemwegs- (zum Beispiel Asthma!) oder auch Herz-Kreislauf-Erkrankungen aus: Unter solchen wurden in und unmittelbar nach Feuerwerksnächten (zusätzliche) Beeinträchtigungen der Lungenfunktion nachgewiesen und Fälle von akuten Beschwerden nach Umgang mit Feuerwerkskörpern registriert. Das BAFU empfiehlt daher Menschen mit solchen Erkrankungen, die direkte Begegnung mit Feuerwerksrauch zu vermeiden.

 

Was die Vielzahl von chemischen Verbindungen betrifft, die bei einem Feuerwerk freigesetzt werden (dazu zählen neben den Salzen verschiedener Schwermetalle diverse Verbrennungsgase sowie organische Verbindungen – die bedenklichen unter diesen werden von Umweltchemikern gern als „VOC“, „volatile organic compounds“ zusammengefasst):

Die allermeisten dieser Stoffe gelangen aus anderen Quellen in unserer technisierten Welt in wesentlich grösserem Umfang als durch Feuerwerk in unsere Umgebung, sodass eine Feuerwerksnacht in Sachen Belastung damit kaum ins Gewicht fällt. Überdies dürfen die hier verwendeten Feuerwerkskörper besonders giftige Schwermetalle – Blei, Arsen, Quecksilber, aber auch Cadmium – gar nicht enthalten (man findet sie darin auch nur in Spuren, wenn überhaupt, die als Verunreinigungen geduldet werden). Dementsprechend sind Quellen für die Belastung von Menschen mit Schwermetallen und anderen Stoffen wohl anderswo zu  suchen als im Feuerwerk.

 

Für Tiere:

Ein Feuerwerk hat jedoch nicht nur Auswirkungen auf Menschen – die Tiere in seiner Umgebung sind mindestens ebenso davon betroffen:

Gehörschädigungen

Die meisten Wirbeltiere haben einen Hörsinn, das heisst Ohren, wie wir Menschen, auch wenn man diese – wie bei Vögeln – nicht immer sieht. Und dieser Hörsinn kann ebenso Schaden nehmen wie der unsere. Zudem ist der Hörsinn vieler Tiere – auch unserer Haustiere – um Vieles empfindlicher als menschliche Ohren.

Folgen von Schreckreaktionen

So können unsere Tiere nicht nur ebenso wie wir Hörschäden in Form von Ohrgeräuschen oder Taubheit erleiden, sondern auch durch die knallenden Geräusche eines Feuerwerks erschrecken oder gar in Panik geraten und blindlinks flüchten – im schlimmsten Fall direkt vor ein fahrendes Auto oder in einen Abgrund. Haustierbesitzern wird daher empfohlen, ihre Tiere vor und während Feuerwerks-Nächten im Haus zu behalten und ihnen eine schallgeschützte Zuflucht zu bieten.

Wildtiere, zum Beispiel Wasservögel, die keine menschliche Behausung als Zuflucht haben, werden nicht selten von Feuerwerk vertrieben und lassen sich erst Wochen nach dem Ereignis wieder an ihren angestammten Plätzen blicken. Daher empfiehlt das BAFU, bei der Planung von Feuerwerk im Rahmen von Veranstaltungen stets auch einen Tierschutz-Experten mit einzubeziehen.

 

Welche Feuerwerkskörper sind in der Schweiz (bzw. in der EU) zugelassen?

  • Das Schweizerische Sprengstoffgesetz und die Sprengstoffverordnung, welche Anweisungen zur Umsetzung dieses Gesetzes enthält, sind der EU-Richtlinie 2007/23/EG angepasst, sodass in den EU-Staaten, unter anderem Deutschland und Österreich, vergleichbare Regeln gelten werden: Feuerwerkskörper dürfen in Verkehr gebracht werden, wenn sie den Sicherheitsvorgaben der EU-Richtlinie entsprechen, einer der 4 Kategorien zugeordnet werden können und den Regeln entsprechend gekennzeichnet sind (Bedienungsanleitung!).
  • Die hochgiftigen Schwermetalle Blei, Arsen und Quecksilber und ihre Verbindungen sowie der organische Chlorlieferant Hexachlorbenzol (HCB) sind als Inhaltsstoffe verboten. Ausserdem dürfen Feuerwerkskörper keine Stoffe enthalten, die gemäss dem Chemikaliengesetz verboten sind.
  • Knallkörper am Boden sind verboten (ausgenommen ist Kleinfeuerwerk der Kategorie 1).
  • Die Kantone können weitere Bedingungen stellen und den Verkauf bzw. Gebrauch von Feuerwerk auf bestimmte Anlässe/Tage limitieren
  • Die 4 Kategorien sind:
    • 1: Feuerwerkskörper, die eine sehr geringe Gefahr darstellen und vernachlässigbar laut sind: z.B. Knallteufel, „Frauenfürze“ (Ladycrackers), Tischfeuerwerk. Die Abgabe ist an Personen ab 12 Jahren erlaubt.
    • 2: Feuerwerkskörper, die eine geringe Gefahr darstellen, wenig laut sind und in eingegrenzten Bereichen draussen abzubrennen sind: Vulkane bis 250g Nettoexplosivmasse (NEM), Raketen bis 75g NEM, Römische Fackeln bis 50g NEM. Die Abgabe ist an Personen ab 16 Jahren erlaubt.
    • 3: Feuerwerkskörper, die eine mittlere Gefahr darstellen, draussen im Freien abgebrannt werden müssen, und deren Lärm bei sachgemässer Verwendung nicht gefährlich ist:  Raketen bis 500g NEM, Batterien bis 1000g NEM, Vulkane bis 750g NEM. Die Abgabe ist an Personen ab 18 Jahren erlaubt.
    • 4: Feuerwerkskörper, die eine grosse Gefahr darstellen und daher nur von Inhabern eines Verwendungsausweises ab 18 Jahren – also Profi-Feuerwerkern – verwendet werden dürfen. Solche Feuerwerkskörper sind nicht im freien Handel erhältlich und können nur von Inhabern eines Erwerbsscheins oder einer Abbrandbewilligung bezogen werden: Darunter fällt alles, was die Beschränkungen für Kategorie 3 übersteigt.

(Quelle: Kantonspolizei St.Gallen)

 

Fazit:

Feuerwerkskörper enthalten eine wahrhaft explosive Mischung der verschiedensten Stoffe, die gemeinsam zu wunderschönem – aber geräuschvollem Farbenspiel am Himmel und am Boden führen können. Wie bei vielen unserer technisierten Vergnügungen scheiden sich auch beim Feuerwerk die Geister: Tradition und bestaunenswerter Lichterzauber stehen gegenüber Belästigung oder gar Belastung durch Lärm, Rauch und Chemikalien.

Ich persönlich liebe das Spiel von Licht und Farben am Himmel, kann jedoch auf die Knallerei gut und gern verzichten. So kann ich die Argumente von Traditionsanhängern und Lärmemfindlichen oder Tierbesitzern gleichermassen nachvollziehen. Definierte Abbrandzeiten (bei Grossfeuerwerken und an Silvester weitgehend gegeben) und eine rechtzeitige Vorbereitung (Haustiere einsperren, Gehörschutz zur Hand haben) sollten in meinen Augen einen für beide Seiten vertretbaren Kompromiss ermöglichen.

Jene Kommentare von Tierbesitzern und -freunden auf sozialen Medien oder im Schnellzug, die ich unmittelbar nach dem eben erst begangenen 1.August 2016 zu lesen und zu hören bekam, lassen jedoch vermuten, dass die mir eigentlich sympathische und kompromissförderliche Gesetzgebung der Schweiz in Sachen Feuerwerk leider reichlich Beugung oder gar Umgehung erfährt.

Dabei gefährden jene, die Feuerwerkskörper unsachgemäss verwenden oder gar illegale, ungeprüfte „Polen-Böller“ aus Osteuropa oder anderen Quellen abbrennen, nicht nur ihre Umgebung, sondern vor allem sich selbst. Denn die Energiemengen, die bei der Explosion von Feuerwerkskörpern in Form von Hitze und Schall freigesetzt werden, sind enorm. Und enorme Energiemengen können enormen, nicht wieder gut zu machenden Schaden anrichten.

Was die Chemikalien betrifft, die in Feuerwerk Verwendung finden oder beim Abbrennen entstehen, weckt nicht das Feuerwerk als solches meine Bedenken, sondern der Umstand, dass einige jener Inhaltsstoffe und Produkte des Feuerwerks, die wir nicht gern in unserer Umwelt wissen, so reichlich aus anderen menschlichen Quellen eben da hineingetragen werden, dass der Beitrag durch privates Feuerwerk dazu in den meisten Fällen nicht mehr sonderlich ins Gewicht fällt.

Alles in allem plädiere ich für Kompromissbereitschaft und gegenseitige Rücksichtnahme, ob am 1. August oder in der Silvesternacht – denn nur so können wir alle einen entspannten Feiertag verbringen.

Und wie steht ihr zum Feuerwerk? Brennt ihr selbst welches ab? Beobachtet ihr lieber, oder seid ihr mit euren Tieren beschäftigt? Habt ihr auch das Gefühl, dass das Feuerwerk sich hin zur Knallerei verändert? Ich freue mich über eure Kommentare!

Collage Sonnenfinsternis

Sommerzeit ist Zeit für die Natur – zum Beobachten und Staunen. Und dieses Staunen über die Natur hat mich schon zeitlebens begleitet – und schliesslich zur Blogparade „Augen auf! Wo mich die Natur zum Staunen bringt„, die noch bis zum 4.9.2016 läuft, inspiriert. Dieser besondere Beitrag dazu – auf dem Blog, der sich ums Staunen dreht, enthält meine Erinnerungen an den Sommer 1999, als meine Schule zum anlässlich eines ganz besonderen Naturereignisses einen klassenübergreifenden Schulausflug veranstaltete: Am 11. August 1999 war über Süddeutschland eine totale Sonnenfinsternis zu beobachten!

Von Zeit zu Zeit geschieht es, dass der Mond für einige Minuten zwischen Sonne und Erde gerät, damit den Sonnenstrahlen im Weg ist und so einen Schatten auf die Erde wirft. Tatsächlich kommt der Mond auf seiner Bahn sogar jeden Monat in der Region zwischen Sonne und Erde vorbei. Als Resultat dessen weist seine bestrahlte Seite an solchen Tagen von uns weg, sodass wir den Mond nicht sehen können: Es ist Neumond.

Da jedoch die Mondbahn um etwa 5° gegen die Erdumlaufbahn um die Sonne geneigt ist, gerät der Mond den Sonnenstrahlen dabei gewöhnlich nicht direkt in den Weg. Wenn er jedoch ausgerechnet an Neumond auch die Erdbahn um die Sonne kreuzt, wird es auf der Erde dort, wo der Schatten des Mondes hinfällt, auch am helllichten Tag kurzzeitig dunkel. Nicht stockdunkel, aber es bleibt doch nur noch 1/10.000 bis 1/100.000 der normalen Tageshelligkeit.

Denn wie es der Zufall will, reicht die Grösse des Mondes aus, um die Sonne von vielen Positionen auf seiner Umlaufbahn gerade vollständig zu verdecken. Wenn das geschieht, spricht man von einer totalen Sonnenfinsternis. Der Schatten, welchen der Mond dabei wirft, ist allerdings nur bis zu 300 Kilometer breit, und den Bereich der Erde, welcher sich während der Finsternis unter diesem Schatten hindurchdreht, wird Kernschattenzone genannt.

Von einem Bereich wenige Tausend Kilometer ausserhalb der Kernschattenzone gesehen gerät der Mond hingegen nur teilweise zwischen Erde und Sonne – und verdeckt auf diese Weise unser Zentralgestirn nur teilweise. Das Ergebnis ist eine partielle – teilweise – Sonnenfinsternis, wie sie in der Schweiz zuletzt 2015 zu beobachten war.

Und schliesslich kann es vorkommen, dass der Mond im Augenblick einer Sonnenfinsternis zu weit von der Erde entfernt ist, als dass er die Sonne vollständig verdecken könnte. Dann kommt es zu einer ringförmigen Sonnenfinsternis, bei welcher die Sonne rings um den zu klein erscheinenden Mond weiter strahlt.

Da ich in Neuss am Niederrhein, im nördlicheren Westen Deutschlands zur Schule ging, war zur Beobachtung der wirklich totalen Sonnenfinsternis eine mehrstündige Reise nach Süden in die Kernschattenzone unabdingbar – in unserem Fall nach Baden-Württemberg ins Schwabenland. Ich durfte dabei sein, da ich den Grundkurs Physik bei Herrn G. gewählt hatte, welcher Teil der Sonnen-Pilgergruppe war. So sind wir noch vor dem Morgengrauen mit zwei Reisebussen in Neuss gestartet, um bescheidenen Wetterprognosen zum Trotz nach der verfinsterten Sonne zu suchen.

Und ich habe damals mit 17 Jahren während des Ausflugs Protokoll geführt und es über all die Jahre aufbewahrt. Nun ist es an der Zeit, meine wohl älteste Geschichte über die spannende Natur auch offen zu erzählen:

11.8.1999, 3:05

Meine innere Uhr war wieder zuverlässiger als der Wecker: Um punkt 2:55 bin ich aufgewacht, früh genug, um ihn leise zu stellen. Meine Rückenschmerzen sind leider nicht weg, wie ich gehofft habe, aber damit werde ich wohl leben müssen, wenigstens heute noch.

3:55

Mittlerweile sitzen wir im Bus und warten auf Herrn G. und die anderen Begleitungslehrer. Dann kann es von mir aus losgehen. Inzwischen ist Herr T., unsere „weibliche Begleitperson“, eingetroffen und versucht uns zu zählen. Auch Herr S. zeigt sich inzwischen, wahrscheinlich sitzt Herr G. im vorderen Bus. Gerade hält „Sigi“, der Busfahrer, eine Ansprache und aktiviert den „Impulsantrieb“ [Ich war zu jener Zeit ein fanatischer Trekkie – man sehe mir daher die Star Trek-Vokabeln nach!]. Es geht los!

5:00

Es ist immer noch dunkel und wir fahren ohne Störungen immer weiter gen Karlsruhe. Gerade wurde in den Nachrichten eine Wetterprognose durchgesagt: Die besten Chancen auf Wolkenlücken gibt es in Saarbrücken, was heisst,  dass wir mit Karlsruhe eine gute Wahl getroffen haben [das ursprünglich geplante Ziel war Stuttgart, jedoch war dort nicht mehr mit freiem Himmel zu rechnen, sodass unsere Reiseleitung kurzfristig umdisponiert hatte].

Die Kernschattenzone der totalen Sonnenfinsternis vom 11. August 1999 vom Atlantik her nach Europa, durch Süddeutschland und am Nordrand der arabischen Halbinsel vorbei bis nach Indien. Die Randzone, in welcher eine partielle Sonnenfinsternis beobachtet werden konnte, erstreckte sich über den Osten Nordamerikas, ganz Europa, einen Grossteil Asiens und Nordafrika.
Animation des Verlaufs von Kernschatten- und Randzone der Sonnenfinsternis am 11.8.1999

Animation des Verlaufs von Kernschatten- und Randzone der Sonnenfinsternis am 11.8.1999

So hatten grosse Teile der Weltbevölkerung Gelegenheit – so denn das Wetter mitspielte – dieses Ereignis zu beobachten, und dementsprechend schlug es auch weltweit hohe Wellen in der Öffentlichkeit.

Ausserdem wurde berichtet, dass in Rio de Janeiro irgend so ein bekloppter Gefängniswärter alle seine wegen Mordes verurteilten Gefangenen freigelassen und sich mit ihnen besoffen hat, da er mit dem Weltuntergang rechnete. Also wenn jemand sagt, der Mensch wäre in den letzten Jahrhunderten irgendwie klüger geworden, muss ich ihm wohl unrecht geben! Heutzutage wird noch genauso viel Furore von wegen Weltuntergang um die Sonnenfinsternis gemacht wie es früher der Fall war, und es wird allerhöchstwahrscheinlich genauso laufen wie immer: Es wird ganz normal Donnerstag werden, dann Freitag, und so weiter.

Es gibt zahlreiche Überlieferungen quer durch die Weltgeschichte, in welchen die kurzzeitige Verdunklung der Sonne als Unglücks-Zeichen oder Missfallen der Götter gedeutet wird (die in der Bibel beschriebene mehrstündige Verfinsterung anlässlich der Kreuzigung Jesu gehört übrigens nicht dazu, denn der Tag der Kreuzigung ist auf einen Feiertag im jüdischen Kalender festgelegt, der niemals auf Neumond fällt).

So soll der griechische Philosoph und Mathematiker Tales von Milet in der Zeit eines Krieges zwischen Medern und Lydern (vermutlich 585 oder 581 v.Chr.) eine Sonnenfinsternis – als einer der ersten Menschen überhaupt – vorausberechnet haben. Als diese dann auch tatsächlich geschah, waren die Kriegsparteien so vom Unmut ihrer Götter erschüttert, dass sie ihre Kriegshandlungen schnellstens eingestellt und Frieden geschlossen haben sollen.

Solcher Aberglaube hat sich auch bis in die heutige Zeit, in der man die Umlaufbahnen von Monden und Planeten kennt und ziemlich genau berechnen kann, erstaunlich gut erhalten. Tatsächlich griffen solche Strömungen schon 1999, relativ zu Beginn des Internet-Zeitalters, derart um sich, dass selbst ich als astronomiebegeisterter Teenager ihren Einflüssen nicht ganz entkommen konnte.

Inzwischen haben wir den Rasthof Brohltal passiert und es beginnt zu dämmern. Ich habe meinen ersten Hunger mit einem Mettwurstbrot gestillt. Draussen giesst es in Strömen.

6:01

Die Fahrt verläuft weiterhin ohne Zwischenfälle. Mittlerweile ist es fast ganz hell, selbst die Bäume, die als letztes Farbe „annehmen“, sind nun grün. Wir sind jetzt irgendwo südlich von Koblenz mitten im Wald und es kommt gerade kein Schild. Eben setzte das Radio wieder ein, es hatte vorhin von einer Sekunde auf die andere aufgehört zu laufen. Ein Funkloch? Jedenfalls war das Einzige, das wir den Nachrichten entnehmen konnten, dass Millionen von Menschen nach Süden strömen (werden), um die Sonnenfinsternis zu sehen.

Wir sind jetzt 38 Kilometer vor Mainz und hören gerade, dass der Papst [damals Johannes Paul II.], ein „grosser Fan von himmlischen Ereignissen“ mit seinem „Privatflugzeug“ abheben und die Finsternis aus der Luft beobachten will. „Fan von himmlischen Ereignissen“, wie das schon klingt…

Jetzt haben wir schon ein Loch in den Wolken und eine Menge Hoffnung auf gutes Wetter, auch wenn die Meteorologen anderer Meinung sind. Inzwischen sind wir bei Bad Kreuznach und es ist fast taghell.

6:55

Schon wieder ist eine Stunde rum und immer noch keine Komplikationen. In wenigen Kilometern erreichen wir eine Raststätte und machen eine halbe Stunde Pause. Eigentlich könnte ich jetzt durchfahren. Aber wir werden schon langsamer, gehen in den „Orbit“ um die Raststätte. Argh! Jetzt ist mir der Deckel vom Stift runtergefallen! – Jetzt heisst es aussteigen.

7:34

Die Pause ist vorbei und die „Impulstriebwerke“ laufen wieder auf Hochtouren. In der Raststätte habe ich endlich ein Mittel gegen den rebellischen Rücken gefunden: Eine Tasse heissen Kamillentee. Der soll einerseits bei Verdauungsstörungen helfen, andererseits gibt er an Ort und Stelle Wärme ab, ist also eine Wärmflasche von innen. Warum bin ich darauf nicht schon früher gekommen? Für den Tee und eine Laugenbrezel habe ich 4,50 DM ausgegeben.

Jetzt sind wir wieder unterwegs nach Karlsruhe (ein Hinweisschild habe ich schon vor der Pause gesehen). Gerade sagen sie im hessischen Rundfunk, dass sie in den letzten Tagen die begehrten Finsternisbrillen verlost haben, und dass sie ab morgen wieder überall günstig zu haben sind.

Die Sonne sendet grosse Mengen Licht, aber auch unsichtbare UV- und Infrarotstrahlung bis zur Erdoberfläche. Unsere Augen sind dafür geschaffen, den sichtbaren Anteil dieser Strahlen, wenn sie von unserer Umgebung gestreut und zurückgeworfen werden, mittels lichtgetriebener chemischer Reaktionen zu „sehen“.

Wenn wir allerdings mit unserem Blick direkt die Sonne am Himmel streifen, ist uns das in der Regel höchst unangenehm. Und das aus gutem Grund: Die geballte Strahlung direkt aus der Sonne reicht, bei längerer Einwirkung als nur einen Augenblick, aller abschirmenden Atmosphäre zum Trotz aus, um nicht nur die Chemie in den Sehzellen unrettbar durcheinander zu bringen, sondern auch um die Netzhautzellen regelrecht zu grillen. Und unsere Netzhaut hat selbst keine Schmerz-Sensoren, sodass wir das noch nicht einmal mitbekommen!

Mit anderen Worten: Der direkte Blick in die Sonne, länger als für eine kurze Streifung, kann zur Erblindung führen! Und das gilt selbst für kleinste Bereiche der noch sichtbaren Sonnenscheibe während einer Finsternis! Deshalb müssen für direkte Beobachtung der Sonne hoch leistungsfähige Filter verwendet werden.

Im Vorfeld einer Sonnenfinsternis gab und gibt es deshalb spezielle „Sonnenfinsternis-Brillen“ im Handel: Papp-Gestelle, in welchen eine spezielle Mylar-Folie anstelle von Gläsern angebracht ist. Diese Folie ist mit einer dünnen Schicht Aluminium oder einer Chrom-Legierung versehen, die mindestens 99,997% des auf sie treffenden sichtbaren Lichts und mindestens 99,5% der Infrarot-Strahlung einfach spiegelt anstatt sie durchzulassen. Die verbleibenden 0,003% des sichtbaren Sonnenlichts reichen aus, um die Finsternis eindrücklich und sicher zu verfolgen. Der gleiche Effekt kann mit Schweisserglas Stufe 14 erreicht werden. Alle anderen Hilfsmittel sind als Sonnenfilter mehr oder minder ungenügend! Für optische Geräte wie Teleskope, die die Sonnenstrahlung naturgemäss bündeln, müssen sogar noch stärkere Filter verwendet werden, die unbedingt vor das Objektiv gehören, wo sie das Licht filtern, bevor es in das Gerät fällt.

[Die Handschrift wird plötzlich unsauber.] Was ist denn hier mit der Autobahn los? Die ist ja ganz hubbelig!

Mittlerweile haben wir nur noch eine dünne Wolkendecke und hoffen alle, dass wir einen mehr oder weniger klaren Himmel haben werden, auch wenn Herr G. schon ganz skeptisch zum Himmel geschaut hat.

8:20

Wir haben den ersten Stau. Wir bewegen uns schrittweise durch einen Wald. Gerade haben Nacera [meine Schulkameraden aus Marokko und ebenfalls ein „Nerd“] und ich in einer Zeitschrift einen Artikel über kollidierende Galaxien gelesen, als wir feststellten, dass die „Impulstriebwerke“ auf Leerlauf geschaltet sind. Ein sicheres Zeichen dafür, dass wir die Kernschattenzone bald erreicht haben dürften.

Je näher wir unserem Ziel kommen, desto mehr festigt sich meine Einstellung, dass das ganze Getue mit dem Weltuntergang reiner Unsinn ist.

8:33

Hoppla! Wir sind ja schon in Karlsruhe! Da waren Nacera und ich so in Zeitschrift und Aufzeichnungen vertieft, dass wir das gar nicht gemerkt haben. Jetzt müssen wir nur noch heil zum Messeplatz gelangen.

9:14

Der „Messeplatz“ war gar kein Messeplatz, sondern ein „Messplatz“ mit einer Strassenbahnhaltestelle namens „Tullastrasse“. Nach einer gründlichen Analyse des Fahr- und Linienplans sind Nacera und ich überein gekommen, in die andere Richtung zu fahren als die anderen, und haben uns prompt verfahren. Jetzt sind wir mit der Linie 2 unterwegs zum Hauptbahnhof um erstmal einen Stadtplan zu finden.

9:54

Wir haben den Schlossplatz gefunden! Hier wird ab 11:12:12 eine Vertonung der Sonnenfinsternis stattfinden. Auf den Wiesen vor dem Schloss und an den Brunnen lagern bereits einige hundert Leute, und es treffen ständig neue ein. Die Himmelsrichtung Süden zu bestimmen war eine Kleinigkeit, da schon mehrere Fernrohre aufgebaut und ausgerichtet sind. Rund um den Schlossplatz haben sich Fressbuden, Bierzelte, mobile Toiletten und eine Unfall-Hilfestelle der Malteser geschart, und ein Streifenwagen fährt Patrouille.

Alles in allem riecht es hier nach Abenteuer und wir sitzen tatsächlich schon zeitweise in der Sonne, auf dem Rand eines Brunnens zwischen riesigen Lautsprecherboxen.

10:47

Es wird kalt. Aber nicht, weil es dunkel wird, sondern weil eine Wolke vor der Sonne vorbei zieht. Wenn sie in wenigen Minuten vorbei ist, kommt wieder ein Abschnitt mit vielen Sonnenlöchern. Jetzt füllt sich der Schlossplatz so langsam, und mittlerweile ist eine ganze Armada von optischen Geräten auf die Sonne gerichtet.

Nacera und ich haben gerade die Lektüre über einige unglaubliche Energiequellen beendet. Zwei Flugzeuge mit riesigen Bannern ziehen ihre Kreise, leider zu hoch um lesen zu können, was draufsteht. Noch sind die Sonnenstrahlen in einer Wolkennische sichtbar und die Sonnenfilterbrillen werden fleissig erprobt. Die Spannung steigt.

11:12:12

Eine Leuchtrakete wird abgeschossen. Der Beginn der ersten Phase der Sonnenfinsternis wird mit einem elektronischen Tusch eingeleitet. Und genau in diesem Moment schiebt sich eine dicke Wolke davor. Na toll! Die Glocke am Schloss läutet, die Motoren der Flugzeuge rumoren und die Menge ist frustriert.

11:36

Ein Raunen geht durch die Menge. Die Sonne blinzelt durch die Wolken. Ich setze meine Brille auf. Als sich meine Augen an den Filter gewöhnt haben, stelle ich fest, dass die Sonne wie ein angebissener Keks aussieht, der Mond schiebt sich aus dem Nordwesten darüber. Dann legen die „Musiker“ los. Es ist faszinierend.

12:00

Gerade beschert uns eine dicke Wolke eine Pause und ich merke – Irrtum! Keine Pause! Die Musik setzt wieder ein und ein Riesenloch erreicht die Sonne, die inzwischen eher wie eine Mondsichel aussieht. Die Schatten der Leute weisen zwar auf die Mittagssonne hin, aber die Intensität des Lichts ist schon merklich geringer.

Ich hatte das Glück, auch die partielle Sonnenfinsternis im März 2015 am späten Vormittag in der Schweiz beobachten zu können. Solch ein Ereignis ist bei klarem Himmel auch nicht zu verpassen, denn selbst bei einer nur teilweisen Bedeckung der Sonne durch den Mond – damals waren „nur“ maximal 2/3 bis 3/4 der Sonnenscheibe verdunkelt – nimmt die Helligkeit des Tages merklich, um nicht zu sagen dramatisch ab. Ähnlich wie am 11. August 1999 um 12 Uhr mittags wurde das Licht auch an jenem Tag in der Schweiz schwächer, irgendwie fahl – ähnlich einer vorzeitigen Abendstimmung.

12:15

Die elektronische Musik weist neben Vogelstimmen jetzt erstmals vereinzelt Akkorde auf. Durch vorbeiziehende Wolken glaubt man den Mond wandern zu sehen. Der grosse Augenblick ist nahe und die Wetterprognose ist astrein. Unterhalb der Sonne hängt ein roter Luftballon einsam im Himmel. Der Wind wird merklich kühler.

12:22

Die Finsternis geht ihrem Höhepunkt entgegen. Die Sichel der Sonne misst scheinbar nur noch Millimeter, das Licht wird immer schwächer und die Buh-Rufe der Schaulustigen wegen Wolkenfetzen werden vom Donnern der Lautsprecher begleitet.

12:29

Plötzlich nimmt das Licht ruckartig ab, die Sichel wird kürzer, die Musik weist geheimnisvolle Akkorde auf, Leuchtraketen werden abgeschossen, Jubelschreie werden laut, alle stehen auf wie zum Gebet, wir nehmen die Brillen ab.

12:30

Corona.

Totale Sonnenfinsternis am 11.8.1999, aufgenommen in Frankreich

Totale Sonnenfinsternis am 11.8.1999, aufgenommen in Frankreich. Luc Viatour www.lucnix.be [GFDL, CC-BY-SA-3.0 or CC BY-SA 2.5-2.0-1.0], via Wikimedia Commons

12:40

Es wird erstaunlich schnell wieder hell. Wir werfen letzte Blicke auf die wieder aufflammende Sonne, da die nächsten Wolken nahen. Ich erinnere mich an einen Stern, der unterhalb der Corona stand, wohl ein Planet. Es war überwältigend.

Die Korona ist die Atmosphäre der Sonne – auch wenn man die freilich nicht atmen sollte. Sie besteht nämlich aus ionisiertem Plasma, also elektrisch geladenen Atom-Trümmern, und ist mit einigen Millionen °C um Vieles heisser als die Oberfläche der Sonne mit ihren rund 5000°C. Warum die Korona so furchtbar heiss ist, weiss man noch nicht genau.

Voraussetzung dafür ist jedenfalls, dass die Korona eine sehr geringe Dichte hat, also aus sehr dünn verteilten Teilchen besteht. Denn die Temperatur ist letztlich unsere Wahrnehmung der Bewegungsenergie und damit der Geschwindigkeit dieser Teilchen. Und die brauchen Platz, wenn sie so unglaublich schnell werden wollen, ohne sich ständig ins Gehege zu kommen und einander auszubremsen. Die hohe Temperatur der Korona führt auch dazu, dass sie von sich aus leuchtet, wenn auch längst nicht so stark wie die Sonne selbst. Deshalb wird die Sonnenatmosphäre auch nur während einer totalen Sonnenfinsternis sichtbar, wenn der Mond das Licht der Sonne vollkommen „ausblendet“.

Im Jahr 1999 hatten wir das Glück, dass die Sonne zum Zeitpunkt der Finsternis eine besonders aktive Phase hatte, wie sie alle 11 Jahre vorkommt. So konnte man mit ein wenig vergrössernder Optik in der Korona zahlreiche Protuberanzen beobachten. Das sind Ausbrüche von Materie aus der Sonnenoberfläche, die bei einer Dicke von bis 5000km bis zu 40.000km über die Sonnenoberfläche und damit auch deutlich über den Rand des Mondes hinausragen können. Auf dem Foto sind sie als rote Schleifen, die von der Sonne in die Korona hineinragen, zu erkennen.

Den Beginn und das Ende der totalen Phase markieren übrigens jene Augenblicke, in welchen die letzten Sonnenstrahlen durch die Zacken der Mondgebirge hindurch auf die Erde blinzeln. Das Ergebnis ähnelt einem Sonnenauf- oder untergang in den Bergen: Dort, wo die Sonnenstrahlen ihren Weg durch eine Spalte finden, funkelt der Berg – oder der Mond- gleich einem riesigen Brillianten. Deshalb wird diese Erscheinung des „funkelnden“ Mondes vor der Sonnen auch „Diamantring-Effekt genannt.

Jetzt wird aus der fälschlichen Abendstimmung eine fälschliche Morgenstimmung, so auch die Musik: Die „aufgehende“ Sonne wird von vogelartigen Klarinettentönen begleitet, die Sichel wächst im Walzertakt. Mittlerweile glaubt man wieder den Mond zu sehen, der da durch die Wolken blinzelt, so ähnlich sieht ihm die Sonnensichel.

Ein Käfer krabbelt über meine Hose, ein Hund bellt: Das Leben kehrt wieder.

18:07

Wir stehen im Stau und sind noch nicht mal richtig auf der Autobahn. Gerade ist eine ewig lange Stauvorhersage zu Ende gegangen, die zum grössten Teil wahrscheinlich unsere Strecke betrifft.

Nachdem die Finsternis vorbei war, fing es an zu regnen und Nacera und ich sind in die Stadt gegangen um etwas zu essen. Da es beim gelben „M“ zu voll war, sind wir zu einem Italiener gegangen, bei dem wir dann eine Stunde warten mussten, bis wir bestellen konnten, und eine halbe Stunde, bis die Pizza kam. So wurde aus „einmal eben eine Pizza essen“ eine 2-Stunden-Aktion. Danach waren wir mehr oder weniger nass und sind ein wenig mit der Strassenbahn durch Karlsruhe gefahren. Später haben wir uns im Foyer eines Museums aufgewärmt und sind auf Umwegen zum Bus zurück gelaufen und gefahren.

Mittlerweile fährt Sigi uns wieder zurück nach Karlsruhe; wahrscheinlich weiss er einen anderen Ausweg. [Tatsächlich haben wir es dank Sigi noch am gleichen Tag zurück nach Neuss geschafft!]

Die nächste Möglichkeit eine – in diesem Fall ringförmige – Sonnenfinsternis zu beobachten gibt es am 1. September 2016 in Afrika. Die nächste totale Sonnenfinsternis gibt es am 21.8.2017 in den USA. Diese Finsternis wird auch in Mitteleuropa bei Sonnenuntergang als partielle Finsternis sichtbar, allerdings wird hier nur etwa 1/1000 der Sonnenscheibe vom Mond bedeckt werden. Erst am 10.6.2021 wird eine ringförmige Sonnenfinsternis im hohen Norden auch bis nach Norddeutschland hinein partiell zu sehen sein. Eine totale Sonnenfinsternis werden wir in Europa jedoch erst im September 2053, anbei an meinem Geburtstag, in Spanien wieder beobachten können. Meine Karten, die noch zu erleben, stehen bislang recht gut und ich hoffe, dann noch fit genug für eine Reise in den Süden zu sein und dieses beeindruckende Spektakel noch einmal geniessen zu können.

Und hast du auch schon eine Sonnenfinsternis beobachten können? Wie waren deine Eindrücke?

Der Mai und Juni waren verregnet wie schon lange nicht mehr. Und das, nachdem viele von uns ihr liebstes Sommer-Fortbewegungsmittel längst aus dem Winterquartier geholt haben. Damit herrschen ideale Bedingungen für den grössten Feind von Autos, Fahrrädern, und was sonst noch so aus Eisen: Rost.

Bei anderen wiederum liegt Rost im Trend: Als schmucke Patina für Nützliches und Kunst in Haus- und Gartenbau. Und bei Frau Tonari und ihren Mitstreitern, die Ende jedes Monats eifrig Rostiges zur Rost-Parade zusammentragen. Und da bin ich dieses Mal auch dabei.

Rost im Garten

Rostig aber filigran: Dekoratives im Garten (Parque de Monserrate, Sintra, Portugal) CC-BY-SA 4.0 by Keinsteins Kiste

 

Aber wie es sich für eine Geschichte auf Keinsteins Kiste gehört, ist meine Geschichte vom Rost nicht nur ein Auszug unserer rostigen Entdeckungen der letzten Jahre, sondern auch ein Einblick in die Chemie dahinter: Was ist Rost eigentlich? Warum kann nur Eisen rosten? Warum gibt es so viel Rost an Schiffen? Wie kann man das eigene Eisen (in Form von Auto, Fahrrad, Gartentor und vielem mehr) vor Rost schützen? Und wie wird man ihn – wenn es dazu zu spät ist – wieder los?

OLYMPUS DIGITAL CAMERA

Bestimmt mit Absicht rostig: Wer kennt den „Ritter Rost“? Das hier ist vielleicht sein Ross „Feuerstuhl“! (entlaufen in den Norden des Bundesstaats Oregon, USA) CC-BY-SA 4.0 by Reto Lippuner

 

Was ist Rost?

Rost mit einer chemischen Formel zu beschreiben ist längst nicht so einfach wie bei vielen anderen Stoffen. Das liegt daran, dass Rost nicht einfach „ein Stoff“ ist, sondern sich gleich aus mehreren zusammensetzt.

Eine chemische Formel für Rost, die dieses Stoffgemisch zu beschreiben sucht, lautet:

In Worten: Rost ist ein wasserhaltiges Gemisch aus verschiedenen Eisenoxiden. Bei den Eisenoxiden handelt es sich um Salze, also Stoffe, die aus Ionen bestehen. Diese verschieden geladenen Ionen werden von der elektrostatischen Anziehung in Kristallgittern zusammengehalten, die wir als atemberaubend regelmässige Kristalle sehen und in der Hand halten können. Beim Rost herrscht jedoch Uneinigkeit, was den Aufbau dieses Gitters angeht: Die Gitter von FeO und Fe2O3 sowie weiteren Sauerstoff-Verbindungen des Eisens sind sich so ähnlich, dass sie sich kreuz und quer durcheinander aufbauen und je nach äusseren Umständen ineinander übergehen. Und zu alledem sind auch noch Wassermoleküle in diesem Gitter eingeschlossen.

Diesen Umstand beschreiben die „*“-Zeichen in der Formel: Wenn die erste Formel einen Kristall beschreibt, beschreibt die Formel hinter dem „*“ ein Teilchen – meist ein Molekül – das auch noch in das Kristallgitter eingebaut ist. Wenn es sich dabei um Wasser handelt, nennen die Chemiker diese eingebauten Wassermoleküle „Kristallwasser“.

Tatsächlich beschreibt aber auch diese Formel „nur“ den Endpunkt verschiedener aufeinander folgender Entwicklungsstufen, die in echtem Rost alle nebeneinander vorliegen. Wie das vor sich geht?

Auf Lanzarote in einer sichtlich feuchten Höhle entdeckt: Eisenoxide einmal kosmisch CC-BY-SA 4.0 by Keinsteins Kiste

 

Wie entsteht Rost?

Die Entstehung von Rost ist ein besonderer Fall eines Vorgangs, der Korrosion genannt wird. Korrosion – das sind Reaktionen von elementaren Metallen (also ungeladenen Metall-Atomen) mit Stoffen in ihrer Umgebung.

Säurekorrosion

Die vielleicht simpelste dieser Reaktionen mag vielen aus der Schule wohlbekannt sein: Kommt ein Metall wie Eisen mit Säure in Berührung, werden Atome aus der Metalloberfläche gelöst und gehen als Ionen in die Flüssigkeit über. Dabei entsteht Wasserstoff, der in kleinen Gasblasen aufsteigt und beim Entzünden geräuschvoll verpufft.

Übrig bleiben nach dieser „Säure-Korrosion“ die Metallionen und die Anionen der ursprünglichen Säure (hier Chlorid-Ionen als Anionen der Salzsäure). Und wenn aus vormals ungeladenen Teilchen Ionen entstehen, sind zwangsweise Elektronen ausgetauscht worden (denn ein Austausch von Kernladung in Form von Protonen fiele – sofern möglich – in den Bereich der Kernphysik):

Die Metall-Atome geben Elektronen ab, die von der Säure stammenden H+-Ionen nehmen diese Elektronen auf. Chemiker nennen die Abgabe von Elektronen „Oxidation“ und die Aufnahme von Elektronen „Reduktion“. Das Metall wird also oxidiert, die H+-Ionen reduziert. Und dabei entstehen ungeladene Wasserstoffatome, die zu je zweien ein Wasserstoffmolekül bilden.

Sauerstoffkorrosion

Bei der Entstehung von Rost ist allerdings keine Säure im Spiel (zumindest keine stärkere als Wasser selbst). Anstelle von H+-Ionen sind dabei nämlich Sauerstoff-Moleküle für die Aufnahme von Elektronen zuständig, die in Folge ihrer Reduktion Oxid-Anionen bilden. Und Sauerstoff gibt es reichlich in der Luft. Da allerdings sowohl die entstehenden Eisen-Ionen als auch die Oxid-Ionen irgendwo hin müssen (und Luft kommt dafür nicht in Frage), funktioniert dieser Elektronenaustausch nur in Wasser, in welchem die verschiedenen Ionen in Lösung gehen können:

Wenn ein Wassertropfen eine Eisenoberfläche benetzt, können Eisenatome im Innern des Tropfens zwei Elektronen abgeben und sich als Fe2+-Ionen im Wasser von der Oberfläche fort bewegen. Die beiden abgegebenen Elektronen bleiben dabei zunächst in der Metalloberfläche zurück – welche sich somit negativ auflädt.

Auch Sauerstoffmoleküle können sich in Wasser lösen und so in einen Wassertropfen eindringen (Chemiker sagen „hinein diffundieren“), und zwar direkt aus der Luft durch dessen Aussenhaut. Wenn sie so am Rand des Tropfens in die Nähe der Eisen-Oberfläche gelangen, können sie dort überschüssige Elektronen aus dem Eisen aufnehmen.

Da Oxid-Anionen (O2-) aber nicht einfach so in Wasser existieren können, läuft die tatsächliche Reaktion etwas anders:

Das Hydroxid-Anion (OH) ist im Prinzip nichts anderes als ein „unfertiges“ Oxid-Anion, das entsteht, wenn ein Sauerstoff-Atom neben zwei Elektronen auch noch ein H+-Ion aufnimmt (dieses H+-Ion wird jeweils von einem Wassermolekül abgegeben, wobei ebenfalls OH entsteht. So bleibt für jedes Sauerstoff-Atom (anfangs je eins in beiden Wassermolekülen und zwei im Sauerstoffmolekül) am Ende ein Wasserstoff-Atom.

Und Hydroxid-Ionen können problemlos in Wasser existieren (tatsächlich sind sie sogar unverzichtbare Bestandteile von Wasser, aber das ist eine andere Geschichte).

Es entsteht also eine Lösung des Salzes Eisen(II)hydroxid. Die römische II, auch Oxidationszahl genannt, gibt dabei an, wie viele Elektronen das Eisen abgegeben hat.

Eisen(II)hydroxid ist weisslich und nicht sehr beständig, denn Fe2+-Ionen geben leicht ein weiteres Elektron an Sauerstoff ab:

Das so entstehende Eisen(III)hydroxid ist schliesslich rostbraun. Dabei sind beide Eisenhydroxide wasserlöslich, sodass sich alle Ionen voneinander getrennt im Wasser bewegen können. Erst wenn das Eisen(III)hydroxid Wasser abgibt

bildet sich schwerlösliches Eisen(III)oxid-hydroxid, das sich als fester Rost auf der Eisenoberfläche absetzt: Es entsteht ein Ionenkristall, in dessen Gitter die abgegebenen Wassermoleküle eingebaut werden, wie es die Formulierung mit dem „Mal“ andeutet. Folglich bleibt das „abgegebene“ Wasser dem Rost zunächst erhalten.

Aber auch das Eisen(II)hydroxid sowie das Eisen(III)oxid-hydroxid können Wasser abgeben:

Während die letzten drei Reaktionen untrennbar miteinander ablaufen, bilden sich  zunehmend feste, aber stets spröde, sich abschuppende Beläge auf der Eisenoberfläche – allerdings nicht unbedingt dort, wo sich die Fe2+-Ionen von der Eisenoberfläche lösen!  So ist der entstehende Rost dem Austausch von Ladungen, welcher für Redox-Reaktionen Voraussetzung ist, weder räumlich direkt im Weg, noch kann er eine luft-und wasserdichte Barriere bilden. Die Folge dessen: Ein Eisenstück, das ungeschützt Luft und Wasser ausgesetzt ist, rostet früher oder später durch.

OLYMPUS DIGITAL CAMERA

Rost ist nicht sehr beständig und rinnt ungeniert auch über weisse Buchstaben (Valley of Fire State Park, Nevada, USA CC-BY-SA 4.0 by Reto Lippuner

 

Können Steine rosten?

Wer sich in der Natur aufmerksam umsieht, findet häufig Steine oder ganze Gesteinsschichten mit rostroten Verfärbungen. Und in manchen Gegenden sind sogar ganze Gesteinsmassive strahlend rot – wie zum Beispiel auf dem Colorado-Plateau im „wilden Westen“ Nordamerikas.

SAMSUNG CSC

Balanced Rock: Rostige Steine im Arches Nationalpark, Utah, USA CC-BY-SA 4.0 by Reto Lippuner

 

Und tatsächlich können auch Steine rosten – nämlich dann, wenn sie Eisen enthalten. Dieses Eisen kann nämlich – meist im Zuge der Entstehung des jeweiligen Gesteins – zu verschiedenen Eisenoxiden reagieren, die als Bestandteile des Gesteins für die rote Farbe sorgen. Unter diesen Eisenoxiden kommt das Mineral Lepidokrokit dem „echten“ Rost am nächsten. Es wird mit der Formel γ-FeO(OH) beschrieben (das γ dient der Unterscheidung von anderen Kristall-Varianten mit der gleichen Verhältnisformel) und enthält im Unterschied zum „echten“ Rost kein zusätzliches Kristallwasser, was das Mineral relativ beständig macht.

Anstatt in sichtbaren Kristallen können Mineralien wie dieses auch feinkörnig in Gesteinen enthalten sein und die verschiedensten Steine rot färben – wie den Sandstein auf dem Colorado-Plateau oder Lava (eigentlich grau oder schwarz) an den Hängen der Vulkankegel auf Lanzarote.

D:DCIM100MEDIAIMG_1017.JPG

Rostrote Lava-Schlacke im Timanfaya Nationalpark, Lanzarote CC-BY-SA 4.0 by Keinsteins Kiste

 

Was bewegt all diese Salze zum Umbau ihrer Kristalle?

Die gezeigten Reaktionen sind ausgewählte Vorgänge in einem System, in welchem sich ein chemisches Gleichgewicht einzustellen versucht. Das heisst, sie sind umkehrbar, und sobald sich das Gleichgewicht tatsächlich eingestellt hat, laufen die Reaktionen in entgegengesetzte Richtungen gleich schnell ab. Monsieur Le Châtelier erklärt auf dem Flughafen gern die Einzelheiten dazu.

Kurzum: Ein System im Gleichgewicht hat die Eigenheit, dass die Zugabe oder Entnahme eines daran beteiligten Stoffs zu einer Verschiebung des Stoffmengenverhältnisses im Gleichgewicht führt – und zwar derart, dass es dem Effekt durch die Zugabe oder Entnahme des Reaktionspartners ausweicht (das entspricht dem Prinzip von Le Châtelier, das auch Prinzip des kleinsten Zwanges genannt wird).

Mit anderen Worten: Wenn die rostige Eisenoberfläche langsam abtrocknet, das Wasser am Ort der Rostentstehung also verdunstet, werden Wassermoleküle, wie sie in den letzten drei Reaktionen entstehen, dem System entzogen. Dem Prinzip von Le Châtelier folgend sind diese drei Teilsysteme entsprechend geneigt, neue Wassermoleküle nach zu liefern (und so auch die ihnen vorangehenden Teilreaktionen, welche die dazu nötigen Ausgangsstoffe liefern, zu befeuern).

So entsteht eine ganze Kette von einander beeinflussenden Reaktionen, welche im Idealfall mit dem Gemenge kristallwasserhaltiger Eisenoxide endet, das die Formel x FeO • y Fe2O3 • z H2O vom Anfang zu beschreiben sucht.

SAMSUNG CSC

Dampfmaschinenzug im Death Valley Nationalpark – Der Rost zeigt: Auch hier gibt es Wasser. Manchmal. CC-BY-SA 4.0 by Reto Lippuner

 

„Rosten“ auch andere Metalle?

Tatsächlich rosten kann natürlich nur Eisen – denn nur Eisen kann zu den rostroten Eisenoxiden reagieren. Korrodieren können hingegen auch viele andere Metalle. Einige haben dabei jedoch das Glück, dass ihre Hydroxide oder andere entstehende Salze nicht oder kaum wasserlöslich sind. So bilden sie sich direkt an der Metalloberfläche und bedecken diese bald lückenlos, sodass sie das darunter liegende Metall vor dem Einfluss von Wind und Wetter schützen. Zu den Metallen, die auf diese Weise gegenüber Wasser „passiv“, also unreaktiv werden, zählen Zink, Magnesium und Aluminium. Besonders Zink findet man häufig draussen, als Oberfläche von Leitplanken, Schildermasten und manchem mehr. Die hauchdünne Oxidschicht auf den Metalloberflächen lässt das ursprünglich glänzende Metall stumpf aussehen – aber dafür korrodiert es nicht!

In gewisser Weise rosten kann das Metall Mangan, das im Periodensystem gleich links vom Eisen zu finden ist. Mangan bildet eine ganze Reihe meist wasserhaltiger Oxide und Hydroxide, die in der Gruppe der „Braunsteine“ zusammengefasst werden. Die Braunsteine kommen in der Natur als Mineralien vor – darunter Manganit MnO(OH) und der im Endzustand wasserfreie Pyrolusit (MnO2 – richtig, Mangan kann auch 4 Elektronen abgeben!).

Für farbenfrohe Korrosionserscheinungen ist jedoch das Metall Kupfer sehr viel bekannter: Die vielerorts sichtbare grüne Patina auf Kupferdächern und Bronzeskulpturen (Bronze ist eine Legierung aus Kupfer und anderen Metallen (ausser Zink)) besteht jedoch nicht aus Kupferoxiden (die wären schwarz bzw. rot), sondern aus einem Gemisch verschiedenster Kupfersalze. Darunter können Kupfercarbonate (aus Reaktionen mit Kohlenstoffdioxid, CO2), -sulfate (aus Reaktionen mit Schwefeldioxid, SO2), vornehmlich am Meer Kupferchlorid (die Chloridionen liefert das Kochsalz im Meer, NaCl), Hydroxide (aus Reaktionen mit Sauerstoff und Wasser) und verschiedene Salze organischer Säuren sein.

D:DCIM100MEDIAIMG_0012.JPG

Bronzener Kapitän auf rostigem Schiff: Kupfer bildet eine grüne Passiv-Schicht aus verschiedenen Salzen, Eisen rostet rötlich. (Cascais, Portugal)  CC-BY-SA 4.0 by Reto Lippuner

 

Die häufig gehörte Bezeichnung „Grünspan“ für die grüne Schicht auf Kupfer und Bronze ist daher nicht ganz richtig. Denn Grünspan ist eigentlich der landläufige Name nur eines ganz bestimmten Salzes, nämlich des Kupfer(II)acetats, eines Salzes der Essigsäure.

 

Welche Metalle können an Luft und Wasser korrodieren? Gibt es da eine Regel?

SAMSUNG CSC

Eine wahrhaft amerikanische Idee: Diese Versuchsreaktoren wurden geschaffen um Flugzeugturbinen anzutreiben. Atomgetriebene Flugzeuge? Hat nicht funktioniert – und jetzt rosten sie (EBR-1, Idaho State, USA) CC-BY-SA 4.0 by Reto Lippuner

 

Theoretisch kann jede Atom- oder Ionensorte Elektronen aufnehmen, doch ihr Bestreben danach ist sehr unterschiedlich stark. Grundsätzlich gilt dabei jedoch: Wenn unterschiedliche Atom- bzw. Ionensorten zusammenkommen, können die Atome oder Ionen, welche lieber Elektronen aufnehmen als ihre Reaktionspartner, Elektronen der anderen Atomsorte übernehmen: Der Partner, der stärker bestrebt ist Elektronen aufzunehmen, wird reduziert, der andere Partner wird oxidiert.

Das „Bestreben Elektronen aufzunehmen“ nennen Chemiker das Redox-Potential eines Teilchens – dargestellt als Paar von Teilchen vor und nach der Elektronen-Aufnahme. Das Redox-Potential kann wie eine elektrische Spannung gemessen werden und hat deshalb auch deren Einheit: Volt.

Je positiver das Redox-Potential ist eines solchen Teilchenpaares ist, desto lieber wandelt sich der elektronenärmere Partner durch Elektronen-Aufnahme zum elektronenreicheren Partner (d.h. je positiver das Redox-Potential ist, desto lieber wird der elektronenärmere Partner reduziert.

(Das Redox-Potential für die Paarung Fe/Fe2+ ist negativ: Fe2+ wird nur schwerlich reduziert – Fe dafür um so leichter oxidiert).

Das Redox-Potential eines Teilchenpaares lässt sich auch mit guten Kenntnissen des Aufbaus der Atome allenfalls abschätzen. Genaue Werte müssen hingegen gemessen werden. Unglücklicherweise kann man einzelne Redox-Potentiale, also das Streben einer einzelnen Teilchensorte nach Elektronenaufnahme, nicht messen, sondern nur das Bestreben, Elektronen von einem bestimmten Reaktionspartner zu übernehmen.

Aber Chemiker wären nicht Chemiker, wenn sie da nicht einen Ausweg gefunden hätten: Sie haben einfach ein Teilchenpaar bestimmt, dessen Redox-Potential gleich Null sei, nämlich die Paarung von H+-Ionen und Wasserstoffatomen (in Wasserstoffmolekülen, H2, die durch Aufnahme je eines Elektrons pro Atom aus den H+-Ionen entstehen) unter ganz bestimmten Rahmenbedingungen. Dieses Paar kann man in Wirklichkeit nebeneinander stellen, indem man eine reaktionsträge Platin-Elektrode in eine Lösung mit 1 mol/l H+-Ionen taucht und sie mit Wasserstoff-Gas (bei einem Druck von 1 bar) umspült. Eine solche Konstruktion wird Normal-Wasserstoffelektrode genannt.

Und wenn man die mit einer Wirklichkeit gewordenen Paarung anderer Teilchen (zum Beispiel einer Eisenelektrode in einer Lösung von Eisen-Ionen) verbindet und ein Voltmeter dazwischen schaltet, zeigt dieses die Differenz zwischen dem Redox-Potential des Eisen-Paares und jenem der Normal-Wasserstoffelektrode – also die Abweichung des Redox-Potentials des Eisen-Paares von Null.

So lange die Chemiker sich also einig sind, wie eine Normal-Wasserstoffelektrode auszusehen hat und welche Rahmenbedingungen einzuhalten sind (Temperatur, Druck, Konzentration der Ionenlösung..), gilt der gemessene Wert als Redox-Potential des Eisenpaares.

So unter stets gleichen Bedingungen gemessene Werte für verschiedene Teilchenpaare kann man in einer Liste ordnen, die als Spannungs- oder Redox-Reihe bekannt ist.

Spannungsreihe

Spannungsreihe: Einige Teilchen-Paare und ihre Redox- (hier: Standard-)potentiale

 

In dieser Liste kann man nun ablesen, dass Sauerstoff in Gegenwart von Wasser viel stärker danach strebt Elektronen aufzunehmen und zu OH zu reagieren, als Fe2+-Ionen zu Eisen-Atomen zu reagieren streben. Die Folge: Eisen rostet bei Wind und Wetter ohne viel Federlesen.

Gold-Ionen (Au3+) würden wiederum sehr viel lieber Elektronen aufnehmen und zu Gold-Atomen reagieren, als Sauerstoff in Gegenwart von Wasser. Die Folge: Gold „rostet“ selbst in Jahrtausenden in feuchter Erde nicht. Das starke Streben nach Elektronenaufnahme überdies dazu, dass Gold-Atome ihre Elektronen auch in Gegenwart der meisten Säuren erst gar nicht an Wasserstoff abgeben. Damit ist Gold auch weitgehend sicher vor Säurekorrosion (so lange man nicht im Labor zu richtig „brutalen“ Mitteln greift)

Ihre Beständigkeit gegenüber Säure- und Sauerstoffkorrosion hat Gold und anderen Metallen, die auch bei Wind und Wetter ihren Glanz auf wundersame Weise mehr oder weniger lange behalten, die Bezeichnung „Edelmetalle“ eingetragen. Metalle, die leicht korrodieren, werden hingegen auch „unedel“ genannt.

SAMSUNG CSC

Einst wurde hier begehrtes Edelmetall geschürft – jetzt rostet es vor sich hin: Verlassene Goldmine bei Cripple Creek, Colorado, USA  CC-BY-SA 4.0 by Reto Lippuner

 

Warum rostet Eisen am Meer besonders stark?

Auf der Kanaren-Insel Lanzarote hat uns eine Erkundungstour einmal in einen (zukünftigen) Ortsteil in Küstennähe geführt, in welchem die Strassen samt Strassenlaternen, Papierkörben und mehr vor dem Bau der Häuser (mit dem man noch nicht einmal begonnen hatte!) angelegt worden waren. Zu unserem Erstaunen fanden wir die Laternen auf den einsam da liegenden Strassen hochgradig verrostet vor (und haben leider keine Bilder gemacht). Konnte sich der Bau der Häuser tatsächlich schon so lange verzögert haben? Eigentlich wirkten die Strassen selbst doch ziemlich neu…da musste das Eisen irgendwie schneller als gewöhnlich gerostet sein – und zwar aus folgendem Grund:

SAMSUNG CSC

Nicht auf Lanzarote, dafür auf Teneriffa zeigt diese Sonnenuhr trotz Rost die Zeit CC-BY-SA 4.0 by Reto Lippuner

 

Die beiden Teilreaktionen zum Austausch von Elektronen zwischen Eisen und Sauerstoff finden während der Rost-Entstehung an verschiedenen Orten statt. Beide Reaktionen können daher nur dann dauerhaft ablaufen, wenn genügend Ladungen zwischen diesen Orten hin- und her geschafft werden können. Und für einen reibungslosen Ladungstransport wird ein möglichst guter elektrischer Leiter benötigt.

Bei der Rost-Entstehung bildet der Wassertropfen diesen Leiter (ein flüssiger elektrischer Leiter wird auch Elektrolyt genannt): Reines Wasser enthält immer auch einige wenige H3O+– und OH-Ionen, die zwecks Ladungstransport bewegt werden können. Sind im Wasser aber zusätzliche Ionen enthalten – zum Beispiel weil Meersalz darin gelöst ist (), dann leitet es den Strom um ein Vielfaches besser, sodass der Elektronenaustausch bei der Rost-Entstehung viel schneller bewerkstelligt werden kann!

Deshalb ist nicht nur die Anlage von Geister-Strassen an der Küste und ohne besonderen Rostschutz unklug. Auch wer mit eisernen Schiffen zur See fährt, sollte sich regelmässig und gründlich um Rostschutz bemühen, möchte er nicht irgendwann mit Mann und Maus untergehen.

Bohrinseln

Ausgemustert oder zwecks (Rost-)Reparatur auf dem Trockendock? Bohrplattformen im Hafen von Santa Cruz de Tenerife CC-BY-SA 4.0 by Reto Lippuner

Aber wie kann man Eisen vor dem Rosten schützen?

Wie man ein Metall vor dem Angriff durch Sauerstoff und Wasser schützt? Indem man diesen beiden Übeltätern etwas in den Weg stellt! Das lässt sich beim Eisen auf mehreren Wegen erreichen:

SAMSUNG CSC

Stop Korrosion! Rost-Polizei an der Route 66, Arizona, USA CC-BY-SA 4.0 by Reto Lippuner

1. Man verarbeitet das Eisen zu „rostfreiem“ Stahl – einer Legierung (ein Mischmetall aus verschiedenen Metallatomen) von Eisen mit mindestens 10,5% Chrom und weiteren Bestandteilen in kleinen Mengen. Das Chrom bildet eine luft- und wasserdichte „Passivschicht“ aus Chromoxid an seiner Oberfläche und schützt damit auch die Eisenatome in seiner Nachbarschaft. Der Nachteil: Solche Stähle sind zäher als Eisen, was das Bohren darin erschwert und dazu führt, dass Gewinde von Schrauben sich schneller festfressen.

SAMSUNG CSC

Kein Chromstahl: Rostender Stahlträger aus dem alten World Trade Center vor dem Neubau – 9/11-Denkmal auf Staten Island, New York City, USA CC-BY-SA 4.0 by Reto Lippuner

2. Man streicht Eisenteile mit möglichst witterungsbeständigen Farben oder Lacken. Da kommen Wasser und Sauerstoff im Idealfall nicht durch. Allerdings gibt praktisch jede Farbschicht dem Trommelfeuer von Sonnenstrahlung, Wind und Nässe früher oder später nach und blättert ab. Und wenn man dann nicht sofort nachstreicht, rostet das Eisen eben doch.

Rostiges Schild

Dem Wilden Westen ist kein Lack gewachsen (gefunden auf Antelope Island im Great Salt Lake, Utah, USA) CC-BY-SA 4.0 by Reto Lippuner

Wesentlich beständiger als ein Anstrich mit Lack und Farbe ist eine Beschichtung des Eisens mit einem anderen Metall. Bewerkstelligen lässt sich das, indem man das Metall mittels Elektrolyse auf dem Eisen abscheidet, oder indem man das Eisen komplett in das geschmolzene Metall eintaucht. Die beiden Metallschichten „verzahnen“ sich dabei an ihrem Übergang praktisch Atom für Atom, was sie nahezu untrennbar miteinander verbindet.

3. Auf den ersten Blick scheinen für eine solche Beschichtung „edlere“, also korrosionsbeständige Metalle Wunschkandidaten zu sein. Das dachten sich auch die Hersteller von Dosen aus Weissblech, also aus mit einer Zinn-Schicht versehenem Eisen.
Die Korrosionsbeständigkeit kann jedoch ebenso gut zum Problem werden, beruht sie doch darauf, dass „edlere“ Metalle noch lieber Elektronen aufnehmen als Eisen. Sobald die Zinn-Schicht einer Weissblech-Dose nämlich beschädigt wird, sodass das Eisen Fe2+-Ionen an Wasser in seiner Umgebung abgeben kann, sorgt das verbleibende Zinn in der Nachbarschaft des Schadens dafür, dass die zurückbleibenden Elektronen sich gar nicht erst im Eisen ansammeln können, sondern umgehend zur Reduktion weitergeleitet werden. So rostet beschädigtes Weissblech letztlich noch schneller als ungeschütztes Eisen.

Desoto

Auch Chrom ist edler als Eisen: Wo die Chromschicht leckt, rostet es besonders schnell (an der Route 66, Arizona, USA) CC-BY-SA 4.0 by Reto Lippuner

4. Das Problem mit den edleren Metallen kann man sich jedoch ebenso gut zunutze machen – indem man nämlich das Eisen mit einem unedleren Metall beschichtet, zum Beispiel mit dem sehr beliebten Zink. Wind und Wetter ausgesetzt bildet Zink an seiner Oberfläche rasch eine passive Schicht, die es zunächst vor der weiteren Korrosion bewahrt. Kommt aber ein verzinktes Eisenwerkstück zu Schaden, übernimmt das freigelegte Eisen die Rolle des edleren Metalls: Es begünstigt die Korrosion des Zinks ohne selbst Schaden zu nehmen. Das verschafft Verantwortlichen Zeit um den Schaden zu beheben ehe Rost entstehen kann.

5. Eine noch extremere Variante von Methode Nummer 4 kommt zum Beispiel bei unterirdischen Eisen-Tanks zum Einsatz: Dort wird ein Block aus einem sehr unedlen Metall über eine Leitung mit dem Tank verbunden und…schlichtweg der Korrosion überlassen. Denn während eine solche „Opferanode“, beispielsweise aus Magnesium, langsam oxidiert wird, liefert sie Elektronen, die an der Eisenoberfläche zur Reduktion eingesetzt werden können – ohne dass Eisenionen ins Spiel kommen und somit Rost entsteht. Es empfiehlt sich daher, solche Opferanoden regelmässig zu ersetzen, ehe sie gänzlich oxidiert sind. Oder man schliesst den Eisentank an den (physikalischen) Minuspol einer Gleichstromquelle (Batterie) an, deren Pluspol mit einer Graphitelektrode verbunden ist. So lange die Batterie hält, liefert dann sie anstelle des Eisens die Elektronen für die Reduktion.

 

Und was tun, wenn schon Rost entstanden ist?

Dächer in Bodie

Rost liebevoll kultiviert: Dächer in der Geisterstadt Bodie (wird als Freilichtmuseum gefplegt) in der Sierra Nevada, Californien, USA  CC-BY-SA 4.0 by Reto Lippuner

 

Da Rost in der Regel durchlässig daher kommt und nicht wenig Wasser enthält, solltest du entstandenen Rost in jedem Fall entfernen, ehe du zu weiteren Rostschutzmassnahmen schreitest. Am einfachsten schleifst du ihn schlichtweg ab – mit einer passenden Schleifmaschine oder einem Sandstrahler.

Wenn das allerdings zu mühsam ist, oder eine bestehende Schutzschicht dadurch weiter beschädigt werden könnte, kannst du kleineren Roststellen stattdessen mit einem „Rostumwandler“ zu Leibe rücken, zum Beispiel mit verdünnter Phosphorsäure (H3PO4). Die reagiert nämlich mit den Sauerstoff-Verbindungen von Fe3+-Ionen im Rost zu Eisen(III)phosphat, FePO4, welches anders als Rost fest und undurchlässig ist und überdies mit seiner stumpfgrauen Farbe nicht so auffällt.

Phosphorsäure ist übrigens auch nicht zu knapp in Cola anzutreffen, weshalb das Getränk unter Liebhabern älterer Fahrzeuge auch schonmal als Rostumwandler zweckentfremdet wird. Phosphorsäurelösung in etwas höherer Konzentration ist im Zweifelsfall jedoch merklich wirksamer.

Beiden Methoden gemeinsam ist allerdings der Haken: Das einmal zu Rost reagierte Eisen ist unrettbar verloren. Beim Abschleifen wird es einfach vom Werkstück entfernt, während es durch Rostumwandler in eine andere Verbindung eingebaut wird, die zwar beständiger als Rost, aber ebenfalls ein Salz ist, das gänzlich andere Eigenschaften hat als ein Metall.

SAMSUNG CSC

Definitiv zu spät für Rostschutzmassnahmen: Echte Rostlaube (das Auto, nicht ich!) in der Geisterstadt Bodie, Californien, USA CC-BY-SA 4.0 by Reto Lippuner

 

Ich empfehle in Sache Rost also Vorsorge statt Nachsorge : Gönne deinem Eisen einen guten Rostschutz, bevor sich Rost bilden kann – und wenn doch etwas rostet, sorge rasch dafür, dass dem Einhalt geboten wird. Es sei denn, du möchtest auch an der Rostparade teilnehmen, die am Ende jedes Monats von Frau Tonari ausgerufen wird, und benötigst dazu noch ein Fotomotiv!

Und was ist Rost für dich? Lästiger Übeltäter oder farbige Oberflächenverschönerung?

Magnete – wer kennt sie nicht. Harte, dunkle Gegenstände, scheinbar weder ganz Stein noch ganz Metall, von welchen geheimnisvolle Kräfte ausgehen. Schon in meiner frühen Kindheit waren sie nicht aus dem Spielzimmer weg zu denken – hielten sie doch die Waggons meiner Holzeisenbahn zusammen, und ermöglichten einem Kleinkind dennoch, den Zug nach Belieben wieder auseinander zu nehmen.

Noch spannender fand ich dereinst jedoch, die Waggons mit den „falschen“ Enden zueinander auf die Gleise zu stellen und einen auf den anderen zuzuschieben, sodass der zweite Waggon wie von Geisterhand vor dem ersten zurückwich…

In der Welt der Grossen sind hingegen Kühlschrankmagnete nicht wegzudenken, oder ebensolche im Büro oder der Schule am Whiteboard. Oder als praktische Scheibenwischer in einer gläsernen Hermetosphäre. Oder…Verwendung für Magnete gibt es in zahllosen Varianten. Und wer zwei davon aufeinander zu bewegt, kann die geheimnisvolle Abstossung spüren, die ich schon als Kind an der Holzeisenbahn beobachten konnte.

Seit meiner Kinderzeit hat sich überdies die Erscheinung mancher Magnete geändert. Sie scheinen kleiner geworden zu sein – und ihre Kräfte gleichzeitig stärker, und häufig schimmern sie metallisch silbern. „Supermagnete“ werden diese Kraftpakete oft genannt, und aus seltenen Erden sollen sie bestehen.

Doch wie und wo entstehen die mysteriösen Kräfte der Magnete eigentlich? Was ist „Magnetismus“? Was hat Magnetismus mit Strom zu tun? Welche Stoffe sind magnetisch? Warum sind Supermagnete so stark? Und wie kann ein Supraleiter über einem Magneten schweben?

 

Was hinter den Kräften steckt

Hast du zwei Magnete zur Hand? Oder einen Magnet und ein Stück Eisen? Wenn du beide langsam aufeinander zu bewegst, wirst du schnell feststellen, dass die geheimnisvollen Magnet-Kräfte umso stärker werden, je näher das eine dem anderen kommt. Irgendetwas ist also im Raum um den Magnet herum, das ein Stück Eisen zu ihm hin zieht – und zwar immer schneller, je näher es dem Magnet kommt. Die Physiker nennen dieses Etwas Magnetfeld.

Was ist ein Magnetfeld?

Ein „Feld“ nennen die Physiker die räumliche Verteilung einer physikalischen Grösse. Das heisst, diese Grösse hat an jedem Punkt in einem Raum einen bestimmten Wert – das Feld ist die Gesamtheit dieser Werte. Würde man draussen, wenn es kalt ist, ein Lagerfeuer entzünden und an jedem Punkt in der Umgebung die Temperatur messen, könnte man die gesammelten Werte zu einem Temperaturfeld zusammenfassen und seine „Gestalt“ beschreiben: Je näher ein Punkt im Temperaturfeld am Feuer liegt, desto höher wird die Temperatur sein.

Neben solch einfachen Grössen wie der Temperatur (Mathematiker nennen solche Grössen „skalar“) gibt es andere physikalische Grössen, die neben ihrem Wert auch eine Richtung haben (solch eine Grösse nennen die Mathematiker „Vektor“): Die Schwerkraft bewegt Gegenstände überall auf und über der Erde nach „unten“, das heisst in Richtung Erdmittelpunkt, ein Zug fährt mit einer bestimmten Geschwindigkeit geradeaus (während die Geschwindigkeit des gleichschnellen Gegenzugs wohl den gleichen Wert hat, aber die entgegengesetzte Richtung).

Auch die geheimnisvolle Kraft im Magnetfeld hat an jedem Punkt eine Richtung. Um die Verteilung der Richtungen im Raum darzustellen zeichnet man Linien, die den  Verlauf der Richtungen andeuten: Ein magnetischer Gegenstand ( auf welchen die „Magnetkraft“ wirkt), wird im Magnetfeld entlang dieser „Feldlinien“ bewegt.

Ein Magnetfeld ist also die Gesamtheit aller Werte und Richtungen für die „Magnetkraft“ in der Umgebung eines Magneten. Zumindest für die Mathematiker. Für die Physiker ist ein Magnetfeld jedoch mehr als eine Sammlung von Zahlen: Es ist wirklich da – ein existierendes physikalisches Etwas, dem Energie innewohnt und das sich mit Hilfe von Gleichungen beschreiben lässt (Felder im Allgemeinen sind tatsächlich „nur“ Zahlensammlungen – reale Felder wie das Magnetfeld sind unter diesen etwas Besonderes).

Die Gleichungen für Magnetfelder hat der Physiker James Clerk Maxwell aufgestellt – deshalb werden sie nach ihm „Maxwell-Gleichungen“ genannt. In Worten sagen sie in etwa Folgendes über Magnetfelder aus:

  1. Ein Magnetfeld hat weder Ursprung noch Ende – es ist quellenfrei. Die „Pole“ eines Magneten markieren also nur die Orientierung des Magnetfelds – welches sich folglich auch im Magneten selbst erstreckt. Dementsprechend sind auch die Magnetfeldlinien ohne Anfang und Ende – sie sind in sich geschlossen, wie eine Rundstrecke beim Autorennen.
  2. Verändert sich ein Magnetfeld mit der Zeit, entsteht dadurch ein elektrisches Feld mit in sich geschlossenen Linien. Magnetismus ist also stets eng verbunden mit der Elektrizität – und umgekehrt.
  3. Denn eine weitere Gleichung sagt aus, dass elektrische Ströme bzw. die Veränderung eines elektrischen Feldes stets ein Magnetfeld erzeugen.
  4. So wird die Maxwell-Sammlung denn auch durch eine vierte Gleichung zu elektrischen Feldern (welche damit auch „real“ sind) vervollständigt: Ein elektrisches Feld kann einen Ursprung haben: Es geht von einer elektrischen Ladung aus. Die Feldlinien verlaufen dann von dieser Ladung fort. Das heisst, es gibt elektrische Felder mit nur einem Pol (der entweder positiv oder negativ ist), während Magnetfelder zwecks Darstellung ihrer Orientierung stets zwei Pole haben!
Magnetfeldlinien1

Eisenfeilspäne richten sich entlang von Magnetfeldlinien zwischen Nord- und Südpol eines Magneten aus und machen das Feld auf diese Weise „sichtbar“.(von Berndt Meyer [GFDL oder CC BY-SA 3.0], via Wikimedia Commons)

 

Als Pole eines Gegenstands, welcher ein Magnetfeld erzeugt, werden somit die Bereiche bezeichnet, in welchen die Magnetfeldlinien aus dem Gegenstand aus- bzw. wieder in ihn eintreten. Dabei hat man sich darauf geeinigt, dass die Seite, an welcher die Feldlinien austreten, sich im Magnetfeld der Erde nach Norden ausrichtet – und dementsprechend Nordpol heisst (der Nordpol der Erde ist also ein magnetischer Südpol, denn entgegengesetzte Pole ziehen sich an). Dort, wo die Feldlinien in den Magneten eintreten, ist dementsprechend der Südpol des Magneten.

Ein Magnetfeld ist also die räumliche Verteilung einer Kraft, die auf magnetische und magnetisierbare Materie und elektrische Ladungen wirkt: An jedem Punkt im Magnetfeld hat die Kraft einen bestimmten Wert (eine „Feldstärke“) und eine bestimmte Richtung.

 

Woher kommt die Magnetkraft?

Mit unseren Augen in unserer Welt betrachtet erscheinen die Magnetkräfte mystisch – ganz wie die elektrischen Kräfte, die beispielsweise einen Luftballon an der Wand festhalten, nachdem man ihn am Wollpullover gerieben hat. Und ganz wie die elektrische (Elementar-)Ladung ist auch der Magnetismus eine Eigenschaft der kleinsten Teilchen:

Jedes Proton, Neutron und Elektron ist ein winzig kleiner, unvorstellbar schwacher Magnet (diese Eigenschaft eines Teilchen wird auch magnetisches Moment oder kurz „Spin“ genannt)! Und diese winzigen Magnete lassen sich zu grösseren Magneten zusammensetzen, wobei ihre Magnetkräfte sich addieren: Die Protonen und Neutronen, die einen Atomkern bilden, machen den Kern zu einem etwas grösseren Magneten. Die Elektronen der Atomhülle jedoch steuern den Löwenanteil zum Magneten vom Ausmass eines ganzen Atoms bei. Atome verbinden sich zu Molekülen oder Kristallen – und Atom-Magnete vereinen sich Stoffen, die wir sehen und anfassen und deren Magnetkräfte wir wahrnehmen können.

 

Warum sind dann nicht alle Stoffe magnetisch?

Jeder der kleinen Elementarteilchen-Magnete (oder kurz: Elementarmagnete) erzeugt sein eigenes winziges Magnetfeld. Und das hat, wie oben beschrieben, eine bestimmte Orientierung. Das heisst, der Nordpol des kleinen Magnetfelds weist in eine bestimmte Richtung, der Südpol in die Gegenrichtung. Und wenn man Richtungen addiert, kommt nicht immer das raus, was man von der Addition von blossen Zahlen gewohnt ist.

Addition von Vektoren: Die Länge der Pfeile stellt den Wert der Grössen a und b dar, die Pfeilrichtung die zur Grösse gehörende Richtung. Solche Vektoren werden addiert, indem man die Pfeile Schaft an Spitze aneinanderreiht. Unterscheiden sich die Richtungen der Summanden dabei sehr, ist der Wert der Summe (die Länge des schwarzen Pfeils) mitunter kleiner als die Werte der Summanden.

 

Wenn man Grössen mit gar zu unterschiedlichen Richtungen addiert, ist das Ergebnis mitunter kleiner als die Summanden! Und wenn man nur genug Summanden mit unterschiedlichen Richtungen addiert, ist das Ergebnis schliesslich praktisch null.

Die Elementarmagnete in einem Stoff können ihre Orientierung frei wählen – so wie eine Kompassnadel sich frei um ihre Mittelachse drehen kann. So orientiert sich jeder Elementarmagnet in einem Stoff wie er gerade will – und wenn genug Elementarmagnete zusammenkommen, wird die Summe ihrer Orientierungen praktisch null: Es entsteht kein wahrnehmbares, „grosses“ Magnetfeld.

Erst wenn Elementarmagnete in ein bereits bestehendes Magnetfeld geraten, zeigen sich Unterschiede zwischen den magnetischen Eigenschaften der Stoffe. Magnetismus ist also nicht gleich Magnetismus. Stattdessen gibt es:

Diamagnetismus

Sobald Elementarmagnete in ein „fremdes“ Magnetfeld geraten, richten sie sich entlang der Feldlinien aus, wie Kompassnadeln im Erdmagnetfeld. Und sobald Ordnung herrscht, wird die Summe der kleinen Magnetfelder zu einem spürbar Grossen – allerdings dem „fremden“ Magnetfeld entgegen gerichtet. Die Magnetkraft, die der Stoff erst im „fremden“ Magnetfeld erhalten hat, hebt die Wirkung ebendieses fremden Magnetfeldes folglich (teilweise) auf.

Da Magnetfeldlinien jedoch nicht einfach unterbrochen werden dürfen, lässt sich dies darstellen, indem man die Feldlinien um den Stoff im Magnetfeld herum führt, als würde der Stoff die Linien verdrängen. Tatsächlich werden solche diamagnetischen Stoffe aus einem Magnetfeld hinausgedrängt wie ein Schwimmer aus dem Wasser!

Diamagnet: Neodym- magnete halten Graphit-Plättchen in der Schwebe

Kohlenstoff ist diamagnetisch: Ein Graphit-Plättchen schwebt im gemeinsamen Magnetfeld von vier vergoldeten Neodym-Magneten

Da die Elektronen unter den Elementarteilchen den Löwenanteil an den magnetischen Eigenschaften eines Stoffes haben, sind für dieses Verhalten im Magnetfeld nur Elektronen nötig – und die gibt es in jedem Atom. Daher ist jeder Stoff, der aus Atomen besteht, ein Diamagnet. Bemerkbar macht sich der Diamagnetismus allerdings nur, wenn der Stoff keine weitere, stärkere magnetische Eigenschaft hat- zum Beispiel bei Wasser oder bei Kohlenstoff.

Die Tatsache, dass damit zwei der wichtigsten Bestandteile von Mensch und Tier diamagnetisch sind, hat die Fantasie einiger Wissenschaftler angeregt: Was wäre, wenn wir dank unseres Diamagnetismus‘ auf Magnetfeldern durch die Luft schweben könnten? Einem Frosch ist ebendies dank eines richtig starken Magnetfelds bereits gelungen (wenn auch mit Sicherheit nicht freiwillig):

Dem Frosch ist dabei übrigens nichts passiert. Magnetfelder sind sowohl für Frösche als auch für Menschen nicht direkt spürbar. Ein ausreichend starker Magnet, dessen Feld einen ganzen Menschen in die Luft drängen kann, muss jedoch erst noch gebaut werden.

Paramagnetismus

Während alle Atome Elektronen haben, haben nicht alle Atome automatisch ein magnetisches Moment. Denn zu einem solchen kommen sie nur, wenn sich die Orientierungen der magnetischen Momente ihrer Bestandteile – insbesondere der Elektronen – nicht gegenseitig aufheben.

Wenn Atomen ein eigenes magnetisches Moment gegeben ist, richten sie sich in einem „fremden“ Magnetfeld geordnet aus wie alle anderen Elementarmagnete auch – allerdings verläuft das Magnetfeld, das sie so gemeinsam bilden, parallel, also ebenso orientiert wie das „fremde“ Magnetfeld. Die Folge davon: Innerhalb eines paramagnetischen Stoffes im Magnetfeld verlaufen mehr Feldlinien in die gleiche Richtung als ausserhalb – und der Paramagnet wird in das Magnetfeld hineingezogen, wenn auch nicht sehr stark.

Zudem gilt, ebenso wie für Diamagneten: Sobald das „fremde“ Magnetfeld verschwindet, gewinnt die Wärme, die ständig alle Atome bewegt, die Oberhand und schüttelt die Elementarmagnete in die Unordnung zurück.

Zu den paramagnetischen Stoffen zählen jene Elemente, deren Atome ungepaarte Elektronen, das heisst solche ohne Gegenstück in Sachen Orientierung, enthalten: zum Beispiel die Alkali- und Erdalkalimetalle und die seltenen Erden. Unter den Molekülen sind dementsprechend Radikale (die mindestens ein ungepaartes Elektron besitzen) paramagnetisch – so zum Beispiel Sauerstoff oder Stickstoffdioxid.

Sauerstoff

Bekannt ist die linke Darstellung des Sauerstoffmoleküls. Dass Sauerstoff paramagnetisch ist, lässt jedoch darauf schliessen, dass auch die rechte Darstellung mit zwei ungepaarten Elektronen der Wahrheit nahekommt.

Ferromagnetismus

Die Stoffe, die wir im Allgemeinen als „magnetisch“ kennen und aus welchen wir unsere Dauermagnete herstellen, verhalten sich im Prinzip wie Paramagnete. Allerdings ist der Ordnungs-„Sinn“ ihrer Elementarmagnete ungleich stärker, sodass Magnetfelder einen ungleich stärkeren Einfluss auf sie haben als auf Paramagnete.

Der bekannteste ferromagnetische Stoff ist Eisen (lateinisch Ferrum) – daher der Name für diese Art von Magnetismus. Ein Ferromagnet verstärkt nicht nur ein „fremdes“ Magnetfeld ungemein. Seine Elementarmagnete können ihre Ordnung zudem auch nach dem Verschwinden des ordnenden Magnetfeldes beibehalten, sodass „ihr“ Stoff dauerhaft ein Magnetfeld erzeugt!

Der verstärkte Ordnungssinn eines Ferromagneten rührt daher, dass die Elementarmagnete darin in besonders enger Beziehung zueinander stehen, welche ihnen eine besondere Austauschwechselwirkung ermöglicht. Diese Wechselwirkung beruht auf dem Pauli-Prinzip, das manch einer vielleicht aus der Schule kennt:

Zwei Elektronen mit vollkommen gleichen Eigenschaften dürfen nicht am gleichen Ort sein (deshalb haben zwei Elektronen, die sich ein Orbital im Atom teilen, stets entgegengesetzte Spins). Tatsächlich geht das Pauli-Prinzip aber noch weiter: Elektronen müssen sich stets in einer oder drei Eigenschaften unterscheiden, während zwei Unterschiede nicht erlaubt sind.

Werden also Elementarmagnete in enger Beziehung in einem Magnetfeld ausgerichtet, sodass ihre Orientierungen sich gleichen, unterscheiden sie sich nur noch in ihrem Ort. In Folge dessen ist ein zweiter Unterschied, zum Beispiel durch eine veränderte Orientierung, ohne das automatische Auftreten eines dritten Unterschiedes nicht mehr erlaubt. Ein Elementarmagnet im ausgerichteten Ferromagneten kann sich also nicht einfach so wieder umdrehen – auch dann nicht, wenn das ausrichtende fremde Magnetfeld längst wieder verschwunden ist.

Erst wenn die Wärmebewegung im Ferromagneten überhand nimmt, kann sie die Elementarmagnete aus ihrer „militärischen“ Starre reissen. Deshalb verlieren Dauermagnete bei hohen Temperaturen ihre Magnetkraft – die „Curie-Temperatur“ eines dauerhaft magnetischen Stoffs verrät, wann das der Fall ist (alternativ kann auch ein heftiger Schlag gegen den Magneten oder ein starkes, störendes Magnetfeld für entsprechende Unordnung sorgen).

Neben Eisen sind einzig die Elemente Cobalt und Nickel ferromagnetisch. Die Dauermagnete unseres Alltags bestehen zudem aus Legierungen, also Metallgemischen, die erst durch die Mischung ferromagnetisch werden.

Antiferromagnetismus

In manchen eigentlich ferromagnetischen Stoffen sind die Elementarmagnete in verschiedene Gruppen bzw. „Gitter“ eingeteilt, von welchen die eine Hälfte sich im Magnetfeld dank der Austauschwechselwirkung stabil in die eine Richtung ausrichtet, die andere Hälfte jedoch in die entgegengesetzte Richtung. Folglich erhält man, wenn man die Magnetkraft aller Elementarmagnete addiert, überhaupt keine Magnetkraft für einen solchen Stoff, und somit auch keine Wechselwirkung mit dem „fremden“ Magnetfeld. Zu diesen Antiferromagneten gehören unter anderem die Elemente Chrom und Mangan und das Mineral Hämatit.

Ferrimagnetismus

Verhalten sich die Elementarmagnete eines Stoffes im Grunde genommen wie die eines Antiferromagneten, während die Stärke ihrer Magnetfelder unterschiedlich ist, bleibt trotz entgegengesetzter Ausrichtung der verschiedenen Gitter ein Magnetfeld erhalten. Ein Ferrimagnet verhält sich also wie ein schwacher Ferromagnet – und tatsächlich gehören die ersten von Menschen entdeckten Dauermagnete in diese Gruppe:

Der Begriff „Magnet“ kommt nämlich vom griechischen „lithos magnes“, also „Stein aus Magnesia“, was sich auf die gleichnamige Region in Thessalien oder auch den Ort Magnesia am Mäander in der heutigen Türkei bezieht, welchen die „Magneten“ (nicht die Steine, sondern das Volk aus Thessalien!) gegründet haben sollen. Der ferrimagnetische Stein, welcher dort gefunden wurde, ist heute als das Mineral Magnetit, oder auch Magneteisenstein, bekannt. Es handelt sich dabei um das  Eisenoxid Fe3O4 bzw. Fe(II)Fe(III)2O4, welches sowohl Fe2+– als auch Fe3+-Ionen enthält. Auch einige ähnliche Verbindungen, in welchen das Fe2+-Ion durch andere Metallionen ersetzt ist, sind ferrimagnetisch, und werden als Gruppe der „Ferrite“ zusammengefasst.

Magnetit - Kristalle: Magnete aus der Natur

Magnetit (silbergraue Oktaeder) in Chalkopyrit (goldfarben) aus Aggeneys, Südafrika – ein ferrimagnetisches Mineral (by Rob Lavinsky, iRocks.com – CC-BY-SA-3.0 [CC BY-SA 3.0], via Wikimedia Commons)

Wie man einen Magneten herstellt

Wenn du einen Dauermagneten zur Hand hast, kannst du eine Eisennadel ganz einfach magnetisieren: Streiche dazu rund 50 mal mit dem Dauermagneten über die Eisennadel – immer in die gleiche Richtung! Auf diese Weise werden die Elementarmagnete in der Nadel nach und nach in die gleiche Orientierung „gebürstet“. Wenn du die Nadel schliesslich mit Hilfe eines Stücks Kork auf Wasser zum Schwimmen bringst, wird sie sich nach dem Erdmagnetfeld ausrichten.

Für die industrielle Herstellung von Magneten wäre es jedoch viel zu mühsam, jeden Magneten einzeln magnetisch zu bürsten. Deshalb verwenden die Hersteller von Dauermagneten ferro- oder ferrimagnetisches Pulver, welches sie innerhalb eines starken Magnetfeldes zusammenpressen. Für die schwarzgrauen, steinartigen Küchenmagnete werden dabei pulverisierte Ferrite eingesetzt. Da jedes Pulverkorn dabei einen Elementarmagnet darstellt (nicht so klein wie die „echten“ Elementarteilchen, aber klein genug), richten sich die Pulverkörner in diesem Magnetfeld ordentlich aus, ehe sie richtig zusammenpappen. Anschliessend werden die Pulverkörner bei sehr hohen Temperaturen zusammen geschmolzen (gesintert)…

Richtig! Dabei geht die Magnetkraft der einzelnen Körner und damit des ganzen Magneten aufgrund der heftigen Wärmebewegung der wirklichen Elementarmagnete wieder verloren! Allerdings bleibt die Orientierung der Körner selbst erhalten, sodass die Ordnung der Elementarmagnete nach dem Abkühlen in einem zweiten äusseren Magnetfeld problemlos wieder hergestellt werden kann.

Besonders starke Magnete erhält man zudem, wenn man dem ferromagnetischen Pulver einen paramagnetischen Stoff wie das Seltenerd-Metall Neodym unterjubelt: Die paramagnetischen Neodym-Teilchen werden im Magnetfeld des sie umgebenden Magnet-Pulvers dauerhaft in Ordnung gehalten und verstärken so das Magnetfeld des Dauermagneten ungemein!

Unglücklicherweise sind Seltenerd-Atome ziemlich reaktionsfreudig. Deshalb werden neodymhaltige „Supermagnete“ mit einer Schicht aus edleren Metallen (was diese Metalle edel macht ist eine andere Geschichte), in der Regel mit einer silbrig glänzenden Legierung aus Kupfer und Nickel, umgeben. Diese Beschichtung kann zudem vergoldet (dann glänzt der Magnet golden) oder verchromt werden.

 

Magnetismus und Strom

Die Maxwell-Gleichungen haben es bereits gezeigt: Wo ein Magnetfeld bewegt wird oder sich verändert, entsteht stets ein elektrisches Feld, und wo elektrische Ladungen (jede davon erzeugt ein kleines elektrisches Feld!) bewegt werden, entsteht ein Magnetfeld.

Diese Umstände weiss sich der Mensch zunutze zu machen, indem er einen Dauermagneten im Kreis dreht, sodass in seiner Umgebung Elektronen (in einem Draht) in Bewegung geraten (das ist ein Dynamo – oder im Grossformat ein Generator), oder Strom durch einen aufgewickelten Draht leitet, sodass das entstehende Magnetfeld in einem äusseren Magnetfeld mitsamt der Drahtspule in Drehung gerät (das ist dann ein Elektromotor). Die Einzelheiten zu solchen Elektromagneten und ihrem Nutzen bieten genug Stoff für eine eigene Geschichte und würden hier den Rahmen sprengen.

Im Allgemeinen unterscheidet sich das Magnetfeld eines Elektromagneten nicht von dem eines Dauermagneten – ausgenommen ist ein entscheidender Punkt: Sobald man einem Elektromagneten den Strom abstellt, verschwindet auch das Magnetfeld. Einen Dauermagneten kann man hingen nicht einfach ein- und ausschalten.

Das gilt auch für den grössten Magneten der Erde – die Erde selbst! Zwar ist das Erdmagnetfeld im weitesten Sinne auf einen riesigen Elektromagneten zurück zu führen – es wird von flüssigem Eisen erzeugt, welches im äusseren Erdkern in Strömungen bewegt wird – aber so lange unser Planet nicht innerlich auskühlt und erstarrt, wird nichts und niemand im Erdkern den Strom abstellen können. Und bis die Erde auskühlt, werden noch einige Milliarden Jahre vergehen müssen.

Elektromagnetische Wellen

Erst die untrennbare Verbindung zwischen elektrischen und Magnetfeldern ermöglicht uns, unsere Umgebung zu sehen und spannende Artikel über Magnetismus zu lesen. Denn wenn irgendwo in einem Atom ein Elektron zu schwingen anfängt, gerät eine elektrische Ladung in Bewegung – schliesslich schwingt die Elementarladung des Elektrons fleissig hin und her.

Und wo eine Ladung, und mit ihr ein elektrisches Feld in Bewegung ist, entsteht laut Maxwells Gleichungen ein Magnetfeld. Und wo ein Magnetfeld entsteht – was einer Veränderung desselben gleich kommt – entsteht sogleich wieder ein elektrisches Feld, und aus dem elektrischen Feld ein neues Magnetfeld…. Die Folge davon: die erscheinenden (und bei Ende der jeweiligen Veränderungen ebenso schnell wieder verschwindenden) Felder pflanzen sich durch den Raum fort. Und zwar so schnell wie nichts anderes: Die sich fortpflanzenden Felder bilden „elektromagnetische Wellen“ – kurz gesagt: Licht.

Und so, wie Licht durch bewegte elektrische Ladungen entsteht, können die Felder einer Lichtwelle wiederum Ladungen in Bewegung setzen. Wie uns dieser Umstand ermöglicht zu sehen, erfährst du in der Geschichte um Licht und Farben.

 

Supraleiter – die stärksten Magneten der Welt

Während Dauermagnete in ihrer Stärke durch die festgelegten magnetischen Eigenschaften ihrer Elementarmagnete begrenzt sind, hängt die Stärke eines Elektromagneten von der Stärke des darin fliessenden Stromes ab: Je stärker der Strom, desto stärker ist auch das erzeugte Magnetfeld. Theoretisch jedenfalls. Denn gewöhnliche Drähte leisten dem Strom stets einen gewissen Widerstand – dadurch entsteht im Draht „Reibungswärme“, die mit zunehmender Stromstärke irgendwann jedes Material zerstört.

Fast jedes Material zumindest. Denn glücklicherweise (für Physikfans und die moderne Technik) haben Wissenschaftler in den 1980er Jahren entdeckt, dass manche Materialien bei sehr, sehr niedrigen Temperaturen kurzerhand ihren gesamten Widerstand aufgeben – und somit ohne Reibung elektrischen Strom leiten. Die ersten dieser Supraleiter mussten noch mit flüssigem Helium auf unter 4°C über dem absoluten Nullpunkt gekühlt werden. Inzwischen gibt es jedoch sogenannte „Hochtemperatur“-Supraleiter, die sich schon mit flüssigem Stickstoff (bis -196°C, also rund 77°C über dem absoluten Nullpunkt) zufrieden geben. Und der lässt sich vergleichsweise wirtschaftlich beschaffen.

Deshalb werden die stärksten Elektromagneten, die beispielsweise in Kernspintomographen oder in Teilchenbeschleunigern zum Einsatz kommen – oder in Labors fantasievoller Wissenschaftler, die Frösche zum Schweben bringen, aus supraleitenden und damit nicht durchbrennenden Drähten hergestellt.

Noch spektakulärer anzuschauen sind wohl die Folgen einer weiteren Eigenschaft der Supraleiter: Neben der unbegrenzten Leitfähigkeit sind sie nämlich auch vollkommene Diamagneten – was ihnen ermöglicht, in einem ausreichend starken Magnetfeld frei zu schweben:

(Nicht zur Nachahmung empfohlen: Flüssigen Stickstoff oder damit Gekühltes NIEMALS mit der blossen Hand anfassen – Kaltverbrennungsgefahr!)

Sind Magnete oder Magnetfelder gefährlich?

Nach unserem heutigen Wissensstand: Nein. Die Orientierung der Elementarmagnete im menschlichen Körper ist für die Funktion der Atome und Moleküle darin praktisch ohne Bedeutung. Menschen bekommen daher selbst dann kaum etwas davon mit, wenn sie in ein starkes Magnetfeld geraten – wie ich nach einer Kernspin-Tomographie meines Kopfes vor einigen Jahren bestätigen kann. Einzig ein paar Lichtblitze „vor“ meinen Augen – so genannte „Magnetophosphene“, die durch Beeinflussung der Nervenströme in der Netzhaut durch das Magnetfeld entstehen – haben auf die Existenz des Feldes hingewiesen.

Anderes gilt für elektrische Geräte jeder Art: Da elektrische Ströme mit Magnetfeldern wechselwirken, können letztere elektrische Geräte gehörig durcheinander bringen oder sogar ausser Gefecht setzen. Wer einen Herzschrittmacher trägt, sollte sich also tunlichst von Kernspintomographen oder Supraleiter-Labors fernhalten (und nicht nur davon – selbst im Schullabor, wo einfache Magnet-Rührgeräte zum Einsatz kommen, habe ich das Warnschild für Herzschrittmacher-Träger gesichtet).

Darüber hinaus besteht die grösste Gefahr, die von Magneten ausgeht, wohl darin, sich unter starken Neodym-Magneten Körperteile einzuquetschen oder von plötzlich im Magnetfeld herumfliegenden ferromagnetischen Gegenständen getroffen zu werden.

Du kannst dich also getrost von der geheimnisvollen Magnetkraft verzaubern lassen und nach Herzenslust mit Magneten experimentieren.

Oder hast du schon? Welche Erfahrungen hast du mit Magneten schon gemacht?

In diesen Wochen dreht sich alles um 22 Kerle auf dem Rasen: Der Ball ist rund, und das Spiel dauert 90 Minuten – In Frankreich beginnt diese Woche die Fussball-Europameisterschaft.

Was aber hat das mit Geschichten um Chemie und Co zu tun?

Auch die Chemie hat ihren Beitrag zum Fussball-Fieber geleistet – und zwar nicht in einer Labor-Küche eines verrückten Chemikers, sondern in der Natur selbst!

Wahrscheinlich kennt jeder die beiden häufigsten Erscheinungsformen von Kohlenstoff – Diamant und Graphit. Ersterer ist bekanntlich der beste Freund eines jedes Mädchens und als funkelnder Schmuckstein heiss begehrt. Letzterer ist vor allem Zeichnern und anderen Skizzenblock-Liebhabern teuer, welche mit ihrem Bleistift kein Blei auf ihrem Papier verteilen, sondern Kohlenstoff in Form von Graphit (deshalb sollte das Zeichengerät eigentlich Graphitstift heissen…).

Dass auch der Fussballgott Gefallen an diesem Element gefunden hat, ist unter Fussballfans allerdings weniger bekannt:

Buckminsterfulleren

Das Bild zeigt ein Molekül aus 60 Kohlenstoff-Atomen, das tatsächlich wie ein Fussball aussieht! Oder eben, wie ein Fussball Anno dazumal aussah. So, wie das runde Leder dereinst eigentlich 60 Ecken hatte, hat das Molekül 60 Kohlenstoff-Atome, die in Fünf- und Sechsecken angeordnet sind, wie die Lederflächen des guten alten Sportgeräts. Und dieses Molekül heisst „Fulleren“ (man betone ganz chemikermässig auf der letzten Silbe), genauer Buckminster-Fulleren, im Englischen auch „buckyball“ oder „footballene“ (das ebenso betont wird wie „Fulleren“).

 

Wie kommt das Fussballmolekül an seinen Namen?

Das internationale Chemie-Namensgeber-Gremium IUPAC hatte für den Kohlenstoff-Fussball ursprünglich einen Namen gemäss seiner eigenen Namens-Regeln vorgesehen:

Hentriacontacyclo[29.29.0.02,14.03,12.04,59.05,10.06,58.07,55.08,53.09,21.011,20.013,18.015,30.016,28.017,25.019,24.022,52.023.50.026,49.027,47.029,45.032,44.033,60.034,57.035,43.036,56.037,41.038,54.039,51.040,48.042,46]hexaconta-1,3,5(10),6,8,11,13(18),14,16,19,21,23,25,27,29(45),30,32(44),33,35(43),36,38(54),39(51), 40(48),41,46,49,52,55,57,59-triaconten …

Da zeigen selbst Wissenschaftler die rote Karte: Viel zu kompliziert! Weil die Chemiker, die über solche Moleküle sprechen, jedoch findig sind, haben sie dieses Molekül nach dem benannt, woran sein Anblick sie erinnerte. Nein, zunächst nicht nach dem Fussball, sondern nach den futuristischen, netzartigen Kugel- und Kuppelgebäuden des Architekten Richard Buckminster Fuller. Dessen Nachname, mit der Chemikernachsilbe „-en“ für Kohlenstoff-Verbindungen mit C-C-Doppelbindungen versehen, diente den Chemikern so lange als Behelfsname für die Kohlenstoff-Bälle, bis die IUPAC 2002 schliesslich nachgab und den Namen offiziell anerkannte.

Biosphère_Montréal_CA

„Biosphère“ – erbaut von Richard Buckminster Fuller zur Expo 1967 in Montreal

 

Warum nun Fuller-en und nicht Football-en? Tatsächlich ist der chemische Fussball nur das erste einer ganzen Reihe in sich geschlossener Kohlenstoff-Moleküle, die eher wie missglückte Versuche der Fussball-Erschaffung wirken. So erinnert das nächste Molekül der Reihe, C70, eher an einen Rugby-Ball, denn an den perfekt symmetrischen europäischen Fussball:

Fulleren C70

[70]Fulleren (ausgesprochen „Siebzig-Fulleren“ – die 10 zusätzlichen C-Atome, die den „Fussball“ [60]Fulleren zum Rugby-Ball ergänzen, sind rot dargestellt (by Ptj [CC BY-SA 3.0], via Wikimedia Commons

 

Als Fullerene werden jedoch alle Moleküle dieser Reihe bezeichnet. Einzig der „wahre“ Fussball unter ihnen, C60 bzw. [60]Fulleren, trägt auch den zweiten Vornamen Fullers, was ihn zum „Buckminsterfulleren“ macht. Und natürlich gebührt nur diesem Exemplar der Spitzname „footballen“.

 

Wie sieht der Stoff [60]Fulleren aus?

Ich hatte im letzten Herbst Gelegenheit, eine Glasphiole mit etwa einem halben Fingerhut voll [60]Fulleren in der Hand zu halten. Und obwohl ich dies als Chemikerin und langjähriger Fan dieser besonderen Laune der Natur als ganz besonderen Augenblick empfand, ist der Stoff, der aus C60-Molekülen besteht, äusserlich recht unspektakulär.

Im Grunde genommen handelt es sich dabei nämlich um ein schwarzbraunes Pulver, dessen Partikel, wenn sie gross genug sind, metallisch glänzen können. Dafür war meine Probe allerdings zu feinkörnig – und sah daher nicht anders aus als ein wenig gesammelter Russ. Und dafür ist reines [60]Fulleren doch ziemlich teuer: Wohl nicht umsonst trug jene Phiole aus der Sammlung eines Zürcher Gymnasiums ein dickes Preisschild „CHF 100.-“ (beim Chemikalienhändler meines Vertrauens gibt es 1 Gramm [60]Fulleren derzeit für rund 300 CHF) – so wird niemand auf die Idee kommen, das „Bisschen Russ“ unsanft zu behandeln oder gar zu entsorgen.

C60-Fulleren-kristallin

Kristalle aus [60]Fulleren (By Fotograf: Jochen Gschnaller [GFDL or CC-BY-SA-3.0], via Wikimedia Commons)

 

Ihre wahre Farbenpracht entfalten die Fussball-Moleküle jedoch, wenn man sie in einem organischen Lösungsmittel löst. In Toluol beispielsweise erscheint [60]Fulleren leuchtend purpurrot.

 

Warum kann es Fussballmoleküle überhaupt geben?

Wer sich an die Schule (oder gar sein Studium) erinnert, mag noch wissen, dass Kohlenstoff eigentlich vier Bindungen eingeht. Diese  räumlichen Gebilde lassen sich praktisch beliebig zu Ketten, Ringen oder ganzen Netzwerken verknüpfen und ermöglichen so die schier unendlich grosse Vielfalt der Kohlenstoff-Chemie.

Die C-Atome im Fussball haben aber nur je drei Bindungen! Zumindest nur drei, deren Anordnung man klar festlegen kann. Das jeweils vierte Valenz-Elektron jedes C-Atoms, welches sonst an der vierten Elektronenpaarbindung teilhat, ist hingegen frei auf der Balloberfläche beweglich.

Diese Elektronen-„Aussenhaut“ verschafft dem [60]Fulleren ganz besondere Eigenschaften. Für Zeichner von Lewis-Formeln, jenen Darstellungen von Molekülen, die aus Elementsymbolen und Strichen für Elektronenpaare bestehen, erweisen sich bewegliche Elektronen jedoch als ziemlich lästig. Schliesslich weiss man nie so genau, wo man sie hinzeichnen soll.

Eine Lösung dieses Problem besteht darin, zwei oder mehrere Versionen eines Moleküls darzustellen und die beweglichen Elektronen einmal hier, einmal dort als zusätzliche Bindung einzuzeichnen.

Ozon_Mesomerie

Darstellung des Ozon-Moleküls durch mesomere Grenzformeln

 

Solche Versionen eines Moleküls, die jedes für sich eine extreme Anordnung der beweglichen Elektronen zeigen, heissen „mesomere Grenzformeln“. Das hier gezeigte Ozon lässt sich mit zweien davon darstellen – würde man sie mitteln, könnte man sagen: Je zwei Sauerstoffatome im Ozon sind über eineinhalb Bindungen miteinander verknüpft.

Was beim Ozon noch sehr überschaubar ist, würde beim [60]Fulleren auch den grössten Fussballfan unter den Chemikern in den Wahnsinn treiben: Um den Kohlenstoff-Fussball vollständig mit mesomeren Grenzformeln darzustellen, müsste man ihn auf 12500 verschiedene Weisen zeichnen! Denn nur so bekommt man alle möglichen Extreme für die Anordnung der beweglichen Elektronen an den „Kanten“ des Fussballs zusammen. Deshalb stellen die Chemiker, wenn sie den C60-Fussball als Lewis-Formel zeichnen, meist die Stabilste der 12500 Möglichkeiten dar: Alle Doppelbindungen befinden sich darin an den Kanten der Sechsecke, während die Fünfecke leer ausgehen.

Fulleren C60

Stabilste Grenzformel für den „Fussball“ [60]Fulleren (der Übersicht zuliebe sind nur die Bindungen der Vorderseite des Balls dargestellt!)

 

Ohne diese grossen Umstände, die der Kohlenstoff-Fussball den Chemikern beim Zeichnen macht, gäbe es dieses Molekül jedoch nicht. Das kann rasch nachvollziehen, wer versucht, einen C60-Fussball aus den vorgefertigten Teilen eines Molekülbaukastens zusammen zu setzen. Denn gleich ob man C-Atome mit vier oder mit drei Bindungen wählt – wirklich ein Fussball sein wollen die alle nicht: Das Gebilde steht spätestens bei der Fertigstellung gehörig unter Spannung.

Das gilt auch für die echten Kohlenstoff-Atome, welchen die Bausteine im Molekülbaukasten nachempfunden sind. Auch das [60]Fulleren-Molekül steht unter Spannung. Das heisst, es enthält eine ganze Menge Energie. Und viel Energie bedeutet in der bequem veranlagten Natur, die stets einem energieärmsten Zustand entgegen strebt, dass so ein Molekül nicht sehr stabil ist.

Andererseits sind bewegliche Elektronen in Sachen Energiegehalt besonders günstig. So bedeutet die Möglichkeit, mehrere mesomere Grenzformeln für ein Molekül zeichnen zu können, auch, dass dieses besonders stabil ist (die Chemiker nennen diesen Umstand „Mesomerie-Stabilisierung“).

Rechnet man all das zusammen, erweist sich die Aussenhaut des C60-Fussballs aus Elektronen als so günstig, dass der Ball trotz innerlicher Spannung stabil ist. Und zwar so stabil, dass Chemiker an dessen Oberfläche weitere Atomgruppen anbringen  und das Ganze auf eine Reise durch einen lebenden Organismus schicken können, ohne dass der Ball dabei Schaden nimmt!

 

Wo kommt das Fussballmolekül natürlich vor?

So exotisch ein fussballförmiges Molekül wirken mag, ist es doch eine ganz alltägliche Sache. Man entzünde eine Kerze (möglichst eine, die ordentlich russt) und halte einen kühlen Löffel oder ein ebenso kühles Stück Porzellan direkt über die Flamme (Achtung: Löffel oder Porzellan mit Tiegelzange, Holzwäscheklammer oder ähnlichem festhalten – das Teil wird heiss!) – und wenn es schön schwarz wird: Herzlichen Glückwunsch zum selbst hergestellten Fulleren!

Natürlich enthält der Russ die Fussbälle und ihre grösseren Verwandten in keiner irgendwie verwertbaren Menge – daneben gibt es noch genügend andere Kohlenstoff-Trümmer – aber ein paar Exemplare sind ganz bestimmt mit dabei.

Aber nicht alle Fussbälle der Natur sind uns so nah. Im Jahr 2010 haben Wissenschaftler mit Hilfe des Weltraumteleskops Spitzer die Existenz von C60 und C70 im planetarischen Nebel Tc 1 nachgewiesen (im Infrarot-Spektrum eines solchen Überrests einer Nova lassen sich Informationen über darin enthaltene Moleküle ablesen). Diese Fullerene haften – das verraten die aufgenommenen Spektren ebenfalls – an Staubteilchen, aus welchen solch ein Nebel besteht. Von der Erde aus hatte man die Weltraum-Fussbälle bis anhin nicht gesehen, weil sie sich laut Prof. Paul Scheier von der Universität Innsbruck vermutlich unter einer Hülle aus Wasserstoff-Moleküle verbergen. Und um die zu durchdringen, bedarf es eines Teleskops ausserhalb jeglicher störender Atmosphäre – eben ein Weltraum-Teleskop.

Einfacher ist es da, die Fussball-Moleküle auf der Erde zu suchen. Das Gestein Shungit, das bis zu 98% aus reinem Kohlenstoff besteht, enthält nachweislich C60 und C70. Mineralienfans haben den Kohlenstoff-Fussball sogar als Mineral – Fullerit – beschrieben. Allerdings hat die International Mineralogic Association IMA, welche die Regeln der Mineralienkunde festlegt, anscheinend nicht viel fürs runde Leder (oder kaum in Reinform natürlich auftretende Stoffe) übrig, sodass dieser Anlauf zurückgewiesen wurde. Ob mit oder ohne Mineralstatus – um das Fussball-Gestein zu finden, muss man sich nicht in den Weltraum, sondern nur nach Ostfinnland, Russland oder Indien aufmachen. Und wem selbst das zu weit ist, der kann Shungit vielerorts als Schmuckstein erstehen.

640px-SCHUNGIT_AMRITH-DE

Shungit-Rohsteine in Karelien, Russland (By Amrith.de (Own work) [GFDL or CC BY 3.0], via Wikimedia Commons)

 

Darüber hinaus „russt“ es auf der Erde meist dort, wo es in der Natur gewaltig kracht. So sind Fullerene beispielsweise in Fulgurit – durch Blitzschläge in Sand oder Gestein zusammengeschmolzenen Glasgebilden – oder in Einschlag-Kratern von Meteoriten nachgewiesen worden.

Wer allerdings mehr mit den Fussbällen anfangen möchte, als ihre Existenz nachzuweisen und sie zu vermessen, wird die dazu nötigen Mengen allerdings technisch aufwändig selbst herstellen müssen. Denn auf der Erde sind die Fullerene zu selten, als dass sich ein Abbau irgendwo lohnen würde.

 

Was kann man mit Fussballmolekülen eigentlich machen?

Ebenso exotisch, wie der Kohlenstoff-Fussball aussieht, erscheinen auch viele seiner Anwendungen. Manches klingt sehr nach Star Trek, doch was ich hier zusammengetragen habe, wird  – mindestens im Labor, zuweilen auch schon in der Welt „draussen“ – bereits gemacht:

Fussbälle als Atomfallen

Wie richtige Fussbälle sind auch Fulleren-Moleküle innen hohl: Der Innendurchmesser des Fussballs C60 beträgt etwa 700pm (Picometer, Billionstel Meter). Das ist genug, um ein ganzes einzelnes Atom (ein Helium-Atom hat beispielsweise einen Durchmesser von 280pm) darin unterzubringen, wie in einem Käfig! Für Atome im Fussball haben die Chemiker eine Schreibweise erfunden, die ein wenig an eine Email-Adresse erinnert: Für ein Helium-Atom im Fussball-Käfig lautet sie beispielsweise He@C60.

242px-Endohedral_fullerene

He@C60 : Ein einzelnes Atom (rot) ist vollständig vom Kohlenstoff-Käfig umschlossen (By Hajv01 (Own work) [GFDL or CC BY-SA 4.0-3.0-2.5-2.0-1.0], via Wikimedia Commons)

 

Das Einsperren von Edelgas-Atomen (das Markenzeichen der Edelgase ist, dass sie chemisch äusserst reaktionsträge sind und normalerweise aus einzelnen Atomen bestehen) ist wohl nur eine Frage des Platzes im Fussball – und der technischen Möglichkeiten, ein Atom in das Innere des Balls zu befördern. Es geht aber noch weitaus abgefahrener:

Das Ganze funktioniert nämlich auch mit einzelnen Stickstoff-Atomen! Stickstoff kommt normalerweise in Molekülen aus je zwei Atomen vor, die über drei Bindungen fest miteinander verknüpft sind (was auch das Gas Stickstoff ziemlich reaktionsträge macht). Einzelne Stickstoff-Atome sind hingegen hoch reaktiv – es sei denn, es gelingt, solch ein Stickstoff-Atom in ein Fulleren einzusperren: N@C60 ist so stabil, dass das Stickstoff-Atom keinerlei Einfluss auf die Fussball-Hülle, geschweige denn auf die Welt jenseits davon hat. So können Wissenschaftler dank des Fussball-Käfigs einzelne Atome vollkommen abgeschirmt von ihrer Umgebung untersuchen, was unter natürlicheren Bedingungen undenkbar wäre.

Fussbälle als Supraleiter

Fussball-Moleküle sind grosszügig: Sie nehmen sehr leicht zusätzliche Elektronen in ihre „Aussenhaut“ auf.

So können sie beispielsweise mit Alkalimetallen wie Natrium oder Kalium zu besonderen Salzen reagieren, die Fulleride genannt werden. Die Kristalle solcher Verbindungen leiten den elektrischen Strom – und mehr noch: wenn man sie auf genügend niedrige Temperaturen abkühlt, leiten sie den Strom praktisch ohne Widerstand! Solche Stoffe nennen die Physiker „Supraleiter“ – und Fulleride gehören, da sie schon bei relativ „warmen“ Temperaturen von 40 Grad über dem absoluten Nullpunkt supraleitend werden können, zu den „Hochtemperatur-Supraleitern“. Überragend sind die Fullerene in diesem Gebiet dennoch nicht, da bereits zeitgleich mit der Entdeckung der Molekül-Fussbälle Mitte der 1980er Jahre Hochtemperatur-Supraleiter aus anderen Materialien entdeckt wurden, die man heutzutage schon ab über 100 Grad über dem absoluten Nullpunkt zum Supraleiten bringt.

Fussbälle als Lebenselixier?

Ihre grosszügige Bereitschaft Elektronen aufzunehmen befähigt die Kohlenstoff-Fussbälle dazu, reaktive Teilchen in ihrer Umgebung geradezu schwammartig „abzusaugen“. Die gefürchtetsten unter diesen reaktiven Teilchen sind sogenannte Radikale – Atome oder Moleküle, die mindestens ein einzelnes Elektron tragen und sich für dieses mit geradezu radikalen Methoden Reaktionspartner zu suchen pflegen. Und damit machen sich Radikale besonders in lebenden Zellen und Geweben, in welchen sie viele Biomoleküle schädigen können, reichlich unbeliebt.

Da liegt es nahe, Fullerene zur Vorbeugung von Krankheiten, die von Zellschäden durch Radikale herrühren (wie zum Beispiel degenerative Nervenerkrankungen wie Alters-Demenz) einzusetzen. Der Haken an der Sache: Das Fussball-Molekül als solches ist nicht wasserlöslich. Deshalb wird eifrig an Methoden geforscht, um die Bälle mit zusätzlichen, wasserlöslichen Atomgruppen zu bestücken.

Bereits eingesetzt werden die die Kohlenstoff-Fussbälle in Anti-Aging-Kosmetik, wo sie die Aufgabe von Vitamin E mit übernehmen sollen: Radikale abfangen, die sonst zur Hautalterung beitragen würden. Da es betreffend einer Giftigkeit oder Nicht-Giftigkeit der Fullerene jedoch nicht genügend Daten gibt, gehen die Meinungen zum Jungbrunnen in Fussballform jedoch ziemlich auseinander.

Fussbälle gegen Krebs und AIDS?

Der zweite Haken an der Sache folgt nämlich auf dem Fuss: Unter den passenden Umständen können Fussball-Moleküle auch zur Entstehung von reaktiven Teilchen beitragen. Bei Bestrahlung mit Licht können Fullerene in Gegenwart von Sauerstoff sogenannten „Singulett-Sauerstoff“ erzeugen, eine ausgesprochen energiereiche Variante des Sauerstoff-Moleküls, welche wiederum Moleküle in seiner Umgebung angreifen kann.

Das macht viele Fulleren-Verbindungen zu regelrechten Zellgiften. Die können jedoch sehr gezielt, beispielsweise gegen Krebszellen, eingesetzt werden, indem man die Fussbälle zuerst in die Zellen hineinbringt und dann den Tumor bestrahlt. In Studien an Zellkulturen und Mäusen funktioniert das zumindest vielversprechend.

Eine weitere bekannte „Nebenwirkung“ von Fullerenen besteht darin, dass sie verschiedene Enzyme hemmen können, wie Sand ein Getriebe blockiert. Unter diesen Enzymen ist die HIV-1-Protease, welche unerlässlich für die (zweifellos unerwünschte) Funktion des HI- bzw. AIDS-Virus ist. So gilt der vielseitige Kohlenstoff-Fussball auch als vielversprechende Option im Kampf gegen HIV und andere Viren.

Fussbälle in Solarzellen

Die Herstellung von Strom in Solarzellen beruht im Prinzip auf der räumlichen Trennung von positiven (Atomrümpfen) und negativen (Elektronen) elektrischen Ladungen mit Hilfe von Lichtenergie. Dazu verwendet man heutzutage meist anorganische Halbleiter, in der Regel Silicium. Es gibt jedoch bereits ebenso Solarzellen aus organischem Material, in welchen die vielseitigen Fullerene als Elektronen-Sammler wertvolle Dienste leisten. Solche Solarzellen erscheinen äusserlich wie eine Kunststoff-Folie, also dünn, biegsam und zuweilen sogar durchsichtig! Einzig was den Wirkungsgrad betrifft, haben die organischen Solarzellen gegenüber ihren anorganischen Verwandten noch aufzuholen.

Fussbälle als….?

Die Liste von Verwendungsmöglichkeiten für das Fussball-Molekül und seine Verwandten liesse sich noch weiter fortsetzen. Und falls nun jemand auf die Idee kommen wollte, einen C60-Fussball zu dem zu verwenden, was man mit einem Fussball normalerweise tut – nämlich Fussball spielen: Ein passendes Material für Fussballtore im Nanoformat ist ebenfalls schon erfunden. Es nennt sich Graphen – und ist ein flaches, nur einen Atomdurchmesser dickes Netz aus Kohlenstoffatomen, die zu sechseckigen Maschen verknüpft sind….aber das ist eine andere Geschichte.

 

Vom kleinen zum grossen Fussball

Es bleibt abzuwarten, ob wir die Spiele der EM 2020 vielleicht schon im mit einem runden, fussballförmigen Solarpaneel betriebenen Fernseher verfolgen können, unser Lieblings-Sportgerät im Kleinformat vom Arzt verschrieben bekommen oder ganz neue Einsatzmöglichkeiten für den Superfussball finden werden.

Schon jetzt wohlbekannt ist hingegen wohl jedem, wie es in 2016 in der makroskopischen Welt zu laufen hat: Das Runde gehört in das Eckige. Und das so oft wie möglich auf der richtigen Seite. In diesem Sinne: Hopp Schwiiz!

 

Und seid ihr dem Fussball-Molekül auch schon einmal begegnet? Oder war euch diese sportliche Laune der Natur bislang völlig unbekannt?

Tierversuche : Wistar-Laborratte

Peter bekommt eine neue Leber

Das Telefon klingelt. Wieder einmal laufen Peter Schauer über den Rücken. Ob das der lang ersehnte Anruf ist? Peter nimmt den Hörer ab und hört zu. Sein Gesicht nimmt einen Ausdruck irgendwo zwischen Furcht und Freude an, der zu sagen scheint: Endlich ist es soweit!

Peter ist schwer krank und steht auf der Organempfängerliste. Seine Leber funktioniert nicht mehr richtig. Wenn Peter leben möchte, braucht er eine gesunde Leber. Am Telefon ist die Klinik – sie haben ein passendes Spenderorgan und bestellen ihn zur Verpflanzung ein.

Während Peter seine Siebensachen packt und sich zur Vorbereitung auf die grosse OP in die Klinik aufmacht, wartet einige Hundert Kilometer entfernt ein Helikopter an einem anderen Krankenhaus darauf, seine kostbare Fracht entgegen zu nehmen: Sorgfältig in einen Kühlbehälter verpackt wird die Leber eines eben verstorbenen Spenders zum Landeplatz gebracht, um zu ihrem wartenden Empfänger geflogen zu werden. Während des Transports ruht das Organ in einer speziellen Lösung, welche es vor der Kälte und allen anderen Widrigkeiten ausserhalb eines funktionierenden Körpers bestmöglich schützen soll. Nur so kann es so gesund wie möglich verpflanzt werden und dem Empfänger ein „neues“ Leben ermöglichen…

 

Ein Morgen im Labor

Im Institut für physiologische Chemie an der Universitätsklinik Essen herrscht morgens um 9 Uhr schon reger Betrieb. Im Präparationsraum spritzt eine Medizinisch-technische Assistentin soeben eine stattliche weisse Ratte in das Reich der ewigen Träume. Das Tier wird narkotisiert, um anschliessend einem strengen Protokoll folgend die Zellen seiner Leber zu entnehmen. Zellen, auf welche die Wissenschaftler des Instituts bereits warten, um Zellkulturen daraus anzufertigen, an welchen sie ihre Experimente machen können. Die spendende Ratte wird aus ihrer Narkose nie wieder erwachen.

Der Raum gegenüber gleicht noch mehr einem richtigen kleinen Operationssaal. Ein Doktorand der Medizin sitzt dort bereits an seinem Arbeitstisch. Vor ihm liegt eine weitere weisse Ratte in tiefer Narkose. Der junge angehende Arzt nimmt an dem Tier eine Lebertransplantation vor: Er entnimmt der Ratte ihre Leber und konserviert sie in einem Behälter mit spezieller Lösung. Dann pflanzt er dem Tier eine andere Leber ein, welche er am Vortag einer anderen Ratte entnommen und in ebensolcher Lösung im Kühlschrank gelagert hatte. Nach Abschluss der Operation wird die Ratte aus ihrer Narkose aufwachen. Die Zeit, welche die Ratte anschliessend mit ihrer neuen Leber überlebt, dient als Indikator dafür, wie gut die verwendete Konservierungslösung für ihren Zweck – das Organ ausserhalb des Körpers gesund zu erhalten – geeignet ist…

Es ist unschwer zu erkennen: In diesem Institut werden Tierversuche gemacht. Und ich bin zu jener Zeit mittendrin – gehöre als Diplomandin zu den Wissenschaftlern, die ihre Zellkulturen aus Zellen der eingeschläferten Ratte anfertigen. Fast ein Jahr meiner Studienzeit habe ich im Tierversuchs-Labor zugebracht, mit den Wissenschaftlern dort gearbeitet und war selbst – zumindest indirekt – an der Nutzung von Tieren für Versuchszwecke beteiligt.

 

Was mich zur Arbeit im Tier-Labor bewegte

Die Faszination, die Geheimnisse des Lebens ein Stück weit zu entschlüsseln und etwas beitragen zu können, das kranken Menschen hilft, hat mich zu meiner Spezialisierung in einem solchen Bereich bewegt. Und wenngleich ich der Forschung im Tier-Labor inzwischen den Rücken gekehrt habe, hat mir dieses eine Jahr wertvolle Einblicke hinter die Kulissen von Tierversuchen gewährt.

Denn das Thema ‚Tierversuche‘ wird kontrovers und oft hoch emotional diskutiert – sogar Ärzte („gegen Tierversuche“), welche man als hoch gebildet einschätzen mag, greifen da zuweilen zu unsachlichen Mitteln, um ihr an sich redliches Ziel zu erreichen: den vollständigen Verzicht auf Tierversuche.

Aber was spielt sich in Tierversuchs-Labors tatsächlich ab?

 

Einige Einblicke in den Alltag im Tierlabor, die auf meinen persönlichen Erfahrungen in Essen fussen:

 

1. Tierversuche macht man nicht „einfach mal eben so“

Bevor ein Wissenschaftler oder seine Arbeitsgruppe Tierversuche machen können, muss er oder sie ein aufwändiges, gesetzlich vorgeschriebenes Antrags- und Bewilligungsverfahren meistern. Das gilt für Deutschland ebenso wie für die Schweiz.

Wer eine Studie mit Tierversuchen plant, muss seine Ziele darlegen und die Eignung bzw. Notwendigkeit der geplanten Versuche zur Erreichung dieser Ziele nachweisen. Zudem setzt sich der Antragsstellende mit der Belastung der Tiere während der Versuche auseinander und wägt die schutzwürdigen Interessen aller Beteiligten (das Wohl der Tiere wie auch den eigenen Nutzen bzw. den Nutzen der Menschheit und Umwelt an den Versuchen) gegeneinander ab.

Schliesslich entscheidet eine Kommission aus Fachleuten darüber, ob ein solcher Antrag bewilligt wird. Die Kantonale Tierversuchskommission (TKV) des Kantons Zürich besteht beispielsweise aus 11 Mitgliedern, darunter 3 Vertretern von Tierschutzorganisationen sowie einem Ethiker und anderen Fachleuten von der Universität Zürich bzw. der ETH.

Erfahrene Wissenschaftler kennen die Vorschriften „ihres“ Landes für Tierversuche gut und können oft abschätzen, welches Vorhaben die Mühe eines Antrags lohnt, und welches nicht. Manchmal treiben die strengen Reglementierungen jedoch geradezu Blüten: Unsere Dozenten erzählten dereinst von der Zurückweisung des Einsatzes eines gut wirksamen Narkosemittels im Tierversuch, weil der Wirkstoff als potentiell krebserzeugend gilt. Pikant ist dieser Entscheid deshalb, weil die Tiere im geplanten Versuch nie wieder aus ihrer Narkose aufwachen sollten – womit ihnen reichlich wenig Zeit geblieben wäre, um des Wirkstoffs wegen Krebs zu entwickeln.

 

2. Die „3 R“ – Refine, Reduce, Replace – waren auch Anfang 2009 schon massgeblich

Der Einsatz von Tieren in „belastenden“ Versuchen, also solchen, die den Tieren Schmerzen, Leiden oder Schäden zufügen, ist gemäss Artikel 17 des Schweizer Tierschutzgesetzes auf das „unerlässliche Mass“ zu beschränken (gleiches gilt auch in Deutschland).

Um dieser Vorgabe gerecht zu werden, folgen Tier-Experimentatoren, auch meine damalige Arbeitsgruppe in Essen, dem 3R-Prinzip: Replace, Reduce, Refine – zu Deutsch: Ersetzen, Verringern, Verbessern.

  • Replace – Ersetzen

Für den Ersatz von Tierversuchen durch alternative Methoden ist meine eigene Arbeit in Essen ein gutes Beispiel: Ich habe – wie eigentlich die meisten Mitglieder der Arbeitsgruppe – die meisten Versuche an Zellkulturen gemacht. Zellkulturen sind Ansiedelungen lebender Zellen in künstlicher Umgebung, an welchen die Reaktion einzelner Zellen oder von Zellverbänden auf bestimmte Einflüsse beobachtet werden kann.

Zellkulturen können aus verschiedenen Quellen gewonnen werden: Krebsähnlich entartete Zellen, die sich nahezu unbegrenzt teilen, können fortlaufend vermehrt und zu Versuchszwecken „herangezüchtet“ werden: Eine bestimmte Sorte solcher Zellen mit einem regelrechten „Stammbaum“ wird als Zell-Linie bezeichnet. Ihre „Entartung“ schränkt jedoch gleichzeitig die Aussagekraft von Versuchen an Zell-Linien ein. Deshalb werden auch Zellen aus gesunden Organen verschiedener Lebewesen eingesetzt. Diese „primären“ Zellen vermehren sich in der Regel jedoch nicht mehr, sodass für jeden Versuchsdurchlauf neue Zellen gewonnen werden müssen. Primärzellen können aus Organen zu diesem Zweck getöteter Versuchstiere (wie der Ratte aus der Einleitung), aber auch aus Schlacht- oder gar OP-Abfällen gewonnen werden.

Zellkulturen und andere Methoden können einen lebenden Organismus jedoch (noch) nicht vollständig ersetzen. Dennoch eignen sie sich gut für viele Fragestellungen in der Grundlagenforschung: Biochemische bzw. molekularbiologische Prozesse innerhalb einzelner Zellen können nachvollzogen und beeinflusst, oder eine Vorauswahl möglicher Wirkstoffe getroffen werden, ehe aussichtsreiche Kandidaten in Tierversuchen und danach in klinischen Studien weiter untersucht werden.

  • Reduce – Verringern

Neben der Verringerung der Anzahl benötigter Versuchstiere durch die sinnvolle Einordnung von Tierversuchen zwischen grundlegender Forschung an Zellkulturen und klinischen Studien, trug in Essen ein weiteres „oberstes Gebot“ zur Minimierung der Anzahl benötigter Tiere dar:

Verschwendung gilt als Todsünde! Ein- bis zweimal in der Woche gab es eine Ratte, die Zellen für die ganze Arbeitsgruppe lieferte, welche bestmöglich zu verwenden waren. Auch deshalb hatten alle Mitarbeiter peinlichst genau darauf zu achten, dass ihre Kulturen stets keimfrei blieben und möglichst restlos für Versuche eingesetzt werden konnten. So sollte keine Ratte unnütz sterben müssen.

  • Refine – Verbessern

Die Wissenschaftler in Essen zeigten sich für Verbesserungen offen: Als ich im Rahmen des Studiums erstmals in das Labor meiner künftigen Arbeitsgruppe kam, wurde die zur Leberzell-„Spende“ vorgesehene Ratte zur Narkose-Einleitung noch in einen Kasten mit CO2 gesetzt (das Gas ist dichter als Luft und behindert die Atmung, sodass das Tier im Kasten daran erstickt!), ehe sie eigentlich einschläfernde Spritze bekam. Als ich später die Vorbereitung auf die Diplomarbeit begann, erfolgte die Narkose-Einleitung mit Isofluran, einem in der Tiermedizin gebräuchlichen Narkosegas.

Diese Art methodischer Verbesserungen gestaltet die Arbeit für alle Beteiligten weniger belastend. Die Ratte schläft unter Isofluran-Einfluss relativ friedlich ein anstatt zu ersticken, und den Experimentator belastet es gewiss weniger, dabei zuzusehen. Überdies liefern weniger gestresste Tiere auch weniger gestresste Zellen, sodass Versuche aussagekräftiger und einfacher zu reproduzieren (mit vergleichbarem Ergebnis zu wiederholen) sind. So dienen Verbesserungen wie diese nicht nur dem Wohl der Tiere, sondern können auch die Anzahl eingesetzter Tiere vermindern.

Den Bemühungen um die Beschränkung von Tierversuchen auf ein unerlässliches Mass ist anzurechnen, dass in der Schweiz im Jahr 2014 rund 600.000 Tiere für Tierversuche verwendet wurden – Anfang der 1980er Jahre waren es noch 2 Millionen jährlich. Das Bundesamt für Lebensmittelsicherheit und Veterinärwesen (BLV) veröffentlicht regelmässig Listen mit allen Forschungsprojekten, für welche Tierversuche durchgeführt worden sind.

3. Tier-Experimentatoren sind gut ausgebildet

Wer Tierversuche machen möchte, muss neben seiner wissenschaftlichen Ausbildung auch im Umgang mit Tieren geschult sein: Neben Versuchs- bzw. Operationstechniken lernt, wer eine Fortbildung zur Befähigung zu Tierversuchen macht, auch ganz allgemeine Fertigkeiten zur sicheren und möglichst stressfreien Handhabung von Tieren, Tierpflege und die Einschätzung der Befindlichkeit (Schmerzen!) von Tieren (was besonders bei Kleinnagern nicht ganz einfach ist, da diese als Beutetiere darauf angewiesen sind, sich Schwächen nach Möglichkeit nicht anmerken zu lassen).

Überdies gehörte ein Tierarzt zu unserer Arbeitsgruppe, zu dessen Aufgaben es gehörte, ein Auge auf die Tiere und die Experimentatoren zu haben.

Ich selbst hatte ebenfalls die Möglichkeit, in meiner Diplomanden-Zeit die Befähigung zu Tierversuchen zu erwerben und die Gewinnung der Ratten-Leberzellen zu erlernen. Letztlich konnte ich mich aber tief im Herzen nicht dazu durchringen, selbst Hand an die Tiere zu legen.

 

4. Tier-Experimentatoren sind nette, anständige Leute

Die Wissenschaftler und Mitarbeiter, die ich im Tierversuchs-Labor kennengelernt habe, sind in keiner Weise kaltherzig, sondern empfindsame und verantwortungsbewusste Menschen, die sehr daran interessiert sind, „ihren“ Tieren möglichst wenig Leid zuzufügen. In ihrem Arbeitsalltag müssen sie jedoch einen gewissen Pragmatismus an den Tag legen, um mit den Belastungen, die auch ein Experimentator bei der Arbeit mit Versuchstieren erfährt, fertig zu werden.

Nichts desto trotz tauschte man sich über Erlebnisse und Vorkommnisse, auch schon einmal in Form einer „Gruselgeschichte“, mit den Tieren aus. Ich nehme deshalb an, es gab innerhalb des Institutes diesbezüglich wenig Geheimnisse oder Beschönigungen. Auch nicht gegenüber Studenten.

So ist es für jemanden, der in einem Tierversuchs-Labor dieser Art arbeitet, kaum zu übersehen, dass die Tiere letztendlich leiden. Und das tat wohl seinen guten Teil dazu bei, dass ich diesem Forschungsbereich am Ende den Rücken gekehrt habe.

 

Was können wir tatsächlich tun, um das Leid der Tiere im Dienste der Menschheit zu vermindern?

Als Gesellschaft können wir

  • Eine Gesetzgebung anstreben, die in ihrer Umsetzung das Handeln gemäss der drei grossen R fördert, anstatt sie zu behindern
  • Die Geduld aufbringen, welche für die Entwicklung praktikabler und sicherer Alternativen zu Tiermodellen nötig ist – und gleichzeitig den Bedarf nach solchen Entwicklungen erhalten: Die kritische Einstellung der Öffentlichkeit gegenüber Tierversuchen macht Alternativen dazu aus wirtschaftlicher Sicht erst notwendig und befeuert den Einsatz von Zeit und Geld dafür.

 

Jeder Einzelne kann

  • Die Debatte um Tierversuche sachlich (was nicht gleich beschönigend ist) führen: Sachliche Darstellungen und Auseinandersetzungen mit dem Thema (das gilt nicht nur für Tierversuche) erscheinen glaubwürdig und können sinnvolle Wege eröffnen, auf denen wirklich etwas zum Wohl der Tiere erreicht werden kann.
  • Bei persönlichen Feldzügen in thematisch verwandten Gebieten einen möglichen Zusammenhang mit Tierversuchen beachten – Beispiel: Für die Zulassung neuer Inhaltsstoffe von Medikamenten, Kosmetika und anderer Alltagshelfer schreiben Gesetzgeber, sowohl in der Schweiz als auch in der EU, Tierversuche zur Überprüfung dieser Stoffe auf ihre (Neben-)Wirkungen vor (diese müssen nicht gesondert genehmigt werden und tauchen daher in der Veröffentlichung des BLV nicht auf). Das bedeutet, wenn ein Inhaltsstoff in der Öffentlichkeit als potentiell gefährlich Ablehnung erfährt, wiederholt überprüft und schlimmstenfalls durch eine Neuentwicklung ersetzt wird, geht dies stets mit neuen Tierversuchen einher. Es macht also Sinn abzuwägen, inwieweit eine mögliche Gefährdung durch einen Stoff die Entwicklung eines Ersatzes auf dem „Rücken“ von Versuchstieren wirklich rechtfertigt.
  • Für sich bewusst überdenken, welche unserer heutigen „Alltagshelfer“, deren Entwicklung und Anwendung Tierversuche erfordert, verzichtbar sind. Ein derzeit populäres Beispiel für eine in meinen Augen verzichtbare „Technologie“ ist die Anwendung von Botox in der Schönheits-Industrie: Botox, besser „Botulinumtoxin“, ist eines der stärksten Gifte der Welt. Deshalb muss jede neue Charge botoxhaltiger Produkte von Gesetz wegen in neuen Tierversuchen auf korrekte Dosierung überprüft werden.

 

Mein Fazit

Auch und besonders nach meiner Zeit im Tier-Labor erachte ich Alternativen zu Tierversuchen als dringendes Anliegen, das unbedingt weiter zu verfolgen ist. Bis solche Alternativen in allen Bereichen verfügbar sind, sollte der Bedarf danach in meinen Augen durch sachliche Auseinandersetzungen wach gehalten werden. Jene, die an Tierversuchen und damit auch an Entwicklungen zum Wohl der Tiere beteiligt sind, verdienen Vertrauen in ihre Menschlichkeit, keine Polemik.

Und ich hoffe, ich habe etwas zu dieser Sachlichkeit beitragen können.

Wie steht ihr zu Tierversuchen? Was kann eurer Meinung nach dagegen/dafür getan werden? Was tut ihr selbst?