Was steckt in unseren Reinigungsmitteln? Welche brauchst du wirklich? Welche Stoffe sind wirklich umweltfreundlich? Was passiert mit den Lebensmitteln in der Küche? Antworten auf diese und viele andere Fragen rund um Chemie und Co im Haushalt findet ihr hier!

Weichspüler - Fluch oder Segen?

Weichspüler haben einen schlechten Ruf: Ich lese auf Facebook in einigen Haushaltsgruppen mit und schnappe dort auf, was euch Haushaltsbetreibende so bewegt. Dabei lese ich immer wieder Beiträge nach dem Prinzip „Hilfe, meine Waschmaschine stinkt!“ und die dazugehörigen Antworten. Die gehen dann meistens in Richtung „Benutzt du Weichspüler? Mach das bloss nicht, die schaden der Maschine und können der Grund für den miesen Geruch sein!“

Obendrauf kam im Sommer 2019 ein wohl ziemlich unsachlicher Beitrag des SWR, der anprangerte, dass eklige Schlachtabfälle als Rohstoffe für Weichspüler verwendet würden und sie damit alles andere als vegan seien.

Wenn diese Waschhilfsmittel so viele schlechte Eigenschaften in sich vereinen, warum werden sie dann in so vielfältiger Ausführung produziert und gekauft?

In diesem Artikel gehe ich den Weichspüler-Mythen auf den Grund: Schaden Weichspüler wirklich der Waschmaschine (oder gar unserer Gesundheit) oder werden sie fälschlicherweise verteufelt?

Was sind eigentlich Weichspüler?

Weichspüler sind in der Regel flüssige Produkte, die kationische Tenside (auch „Invertseifen“ genannt) enthalten. Diese besonderen Tenside werden in der Waschmaschine beim letzten Spülgang hinzugefügt und sollen dafür sorgen, dass die Wäsche nach dem Trocknen weicher ist.

Zusätzlich wirken viele Weichspüler gegen elektrische Aufladung (einige der kationischen Tenside sind sogenannte Antistatika), enthalten verschiedene Duftstoffe, optische Aufheller und zuweilen geruchsbindende Moleküle.

Warum wird Wäsche beim Trocknen hart?

Beim Trocknen von Wäsche kann es zur sogenannten „Trockenstarre“ der Textilien kommen. Dabei bilden sich Wasserstoffbrücken-Bindungen zwischen Fasern aus Zellulose, die diese Fasern vorübergehend „verkleben“. So wird ein ursprünglich flexibler Stoff hart und steif.

Zellulose ist doch der Pflanzenbestandteil, aus dem man Papier macht? Richtig! Aber ebenso ist er der Hauptbestandteil von Baumwollfasern, aus denen man Textilien macht.

Ganz besonders deutlich erlebe ich die Trockenstarre an meinem Oberteil aus Viskose. Dieses Material ist nämlich nichts anderes als Gewebe aus einem Garn, das aus verflüssigter Zellulose neu gesponnen wurde (eine sogenannte Regeneratfaser). Chemisch unterscheiden sich die Moleküle in diesem Garn nicht von natürlicher Baumwolle. Die Neigung zur Trockenstarre eingeschlossen.

Wenn ich besagtes Kleidungsstück wasche und auf der Leine trockne, fühlt es sich nachher steif wie ein Brett an. Allerdings nicht für lange. Spätestens wenn ich es ein paar Minuten getragen habe, fällt es wieder weich und geschmeidig, als wäre nichts gewesen. Das rührt daher, dass Wasserstoffbrücken im Vergleich zu „richtigen“ chemischen Bindungen (d.h. Atombindungen) nicht besonders fest sind. Das macht sie bei ausreichend Bewegung entsprechend kurzlebig.

Was kann ein Weichspüler dabei bewirken?

Die kationischen Tenside im Weichspüler heissen so, weil ihre Moleküle eine positive elektrische Ladung tragen. Damit finden sie dicht mit Elektronen umgebene (und damit leicht negativ geladene) Atome äusserst anziehend und lagern sich an solche gerne an. Doch genau diese elektronenreichen Atome sind auch für die Entstehung von Wasserstoffbrücken notwendig. Wenn jedoch ein kationisches Tensid solch ein Atom besetzt, bleibt dort kein Platz mehr für eine Wasserstoffbrücke. Und ohne Wasserstoffbrücken keine Trockenstarre.

Was genau sind kationische Tenside?

Tenside im Allgemeinen sind Moleküle, deren eines Ende gut wasserlöslich ist, während das andere Ende überhaupt nichts von Wasser hält. Die Wasserlöslichkeit eines Moleküls geht mit einer elektrischen Ladung oder ungleicher Elektronenverteilung zwischen den Atomen einher. Die alltäglichsten Tenside sind Seifen. Sie tragen eine negative elektrische Ladung („anionische Tenside“) und sind für ihre Superwaschkraft hoch geschätzt (mehr dazu erfahrt ihr hier).

Ein Tensid (hier ein Anionisches) ähnelt im Prinzip einem Streichholz: Der „Kopf“ ist wasserlöslich, der „Schaft“ ist wasserabweisend und fettlöslich. So kann dieses Molekül mit zwei miteinander unverträglichen Stoffen gleichzeitig wechselwirken.

Kationische Tenside tragen dagegen eine positive elektrische Ladung. Sie enthalten in der Regel ein Stickstoffatom, das vier Bindungen statt seiner üblichen drei eingegangen ist. Damit teilt das Stickstoffatom ein Elektron mehr als üblich mit seinen Nachbarn, weshalb seine Kernladung um +1 überwiegt.

Vom Ammonium zum Tensid

Das einfachste Molekül dieser Art ist das Ammoniumion NH4+, in dem vier Wasserstoffatome an den Stickstoff gebunden sind. Klein und geladen ist dieses Molekül sehr gut wasserlöslich. In einem kationischen Tensid sind die vier Wasserstoffatome jedoch durch Kohlenwasserstoffreste ersetzt. Wenn mindestens einer davon so lang ist, dass seine Unlöslichkeit in Wasser sich bemerkbar macht, ist das Molekül ein Tensid.

Strukturformel für DSDMAC, ein typisches kationisches Tensid für Weichspüler
„DSDMAC“, ein typisches kationisches Tensid: Der „Kopf“ (rot) mit dem Stickstoffion ist wasserlöslich, der „Schaft“ (blau), bestehend aus zwei langen Kohlenwasserstoffketten, nicht. Da positiv geladene Teilchen nicht allein vorkommen, wird die Verbindung als Salz aus DSDMAC- und Chlorid-Ionen verwendet.

Weil sie sich vom Ammonium ableiten und alle vier H-Atome durch Kohlenwasserstoffreste ersetzt sind, werden Moleküle dieser Sorte „quartäre Amine“ oder kurz „Quats“ genannt.

Quats sind im Alltag weit verbreitet

Vielleicht kennt ihr das ein oder andere schon als Antistatika zum Aufsprühen oder für seine Wirksamkeit gegen Bakterien und Pilze (Benzalkoniumchlorid, ein bekanntes Konservierungsmittel, gehört auch zu dieser Familie!). Oder als „Weichmacher“ der anderen Art: Polyquaternium-Verbindungen sind, als Alternative zu Silikonöl, Bestandteile z.B. von Haarspülungen. Darin sind die positiv geladenen Stickstoffatome zu längeren Ketten verknüpft, die sich um die Haare legen und ihnen eine glatte Oberfläche und damit leichte Kämmbarkeit verleihen.

Wie gut sind Weichspüler biologisch abbaubar?

In den 1990ern kamen in Weichspülern meist simple „Quats“ wie das oben gezeigte DSDMAC zum Einsatz. Die haben jedoch einen entscheidenden Nachteil: Es gibt sie in der Nahrung von Lebewesen, insbesondere Kleinstlebewesen, nicht, was bedeutet, dass sie nur schwerlich bis gar nicht biologisch abbaubar sind.

Da eine vernünftige biologische Abbaubarkeit von Tensiden wie in Weichspülern aber seit 2006 von der EU vorgeschrieben ist, kommen heutzutage angepasste Moleküle zum Einsatz. Anstatt einfacher Kohlenwasserstoffreste sind darin Alkohol-Gruppen an den Stickstoff gebunden, die mit Fettsäuren verestert sind. Diese Verbindungen, kurz „Esterquats“ genannt, ähneln damit den Fetten bzw. Triglyceriden, die wir alle als Nahrung kennen. Somit ist die Natur gut für die Spaltung und Verwendung solcher Verbindungen gerüstet. Das heisst, die Esterquats sind gut biologisch abbaubar.

Strukturformel eines Esterquats
Ein Esterquat mit drei Alkohol-, d.h. OH-Gruppen: Zwei davon sind mit Fettsäuren verestert, die dritte links nicht. Dieses Molekül kann von Lebewesen an den Estergruppen (-O-CO-) leicht gespalten werden.

Zumindest in der Theorie ist das eine tolle Sache. Beim Herumstöbern im Netz nach den Inhaltsstoffen von Weichspülern bin ich allerdings auf ein Sicherheitsdatenblatt eines Produkts einer aus der Werbung gut bekannten Firma gestossen – und siehe da: Der wirksame Bestandteil ist kein Esterquat, sondern unter anderem das (un)gute alte DSDMAC. Immerhin habe ich diese Angabe des betreffenden Herstellers gefunden, während sich andere gar nicht in die Karten schauen lassen.

So halte ich die Aussage auf Wikipedia, dass DSDMAC und Co. Heutzutage durch Esterquats ersetzt sind, für höchst fraglich.

Schlachtabfälle?! – Wie man quartäre Amine herstellt

Der anfangs erwähnte Beitrag des SWR wurde nicht zuletzt dafür kritisiert, dass er den Eindruck erweckte, in Weichspülern ’seien eklige Schlachtabfälle drin‘ (was von der Boulevardpresse nur zu gern aufgegriffen wurde).

Tatsächlich sind die Rohstoffe, aus denen man „Quats“ für Weichspüler herstellt, Fette, die von Pflanzen oder Tieren stammen können. Da diese Fette keinen besonderen Qualitätsansprüchen genügen müssen, sind Schlachtabfälle letztlich eine wirtschaftliche und nachhaltige Quelle dafür. Dass die auch rege genutzt wird, ist auch seit langem hinlänglich bekannt.

Die Fette werden jedoch in einer ganzen Reihe von Schritten verarbeitet:

  1. Die Fette werden zunächst wie bei der Seifenherstellung gespalten („verseift“), um freie Fettsäuren zu gewinnen. Das ebenfalls entstehende Glycerin wird davon abgetrennt.
  2. Anschliessend lässt man die Fettsäuren bei hoher Temperatur und einem Metallkatalysator (ein Hilfsstoff, der die Reaktion erleichtert) mit Ammoniak (NH3) reagieren, um das Stickstoffatom einzuführen. Es entstehen sogenannte Fettsäurenitrile.
  3. Nach weiterer Reinigung werden die Fettsäurenitrile mit Wasserstoff (H2) umgesetzt. Auch für diese Hydrierung genannte Reaktion ist ein Metall als Katalysator nötig. Dabei können „Fettamine“ mit einem (wenn dabei Ammoniak anwesend ist), zwei oder drei gebundenen Kohlenwasserstoffresten entstehen.
  4. In einer Reaktion, die Alkylierung genannt wird, kann ein Fettamin mit drei Kohlenwasserstoffresten (d.h. ein tertiäres Amin) schliesslich mit einem vierten solchen Rest versehen werden.

Nach einem letzten Aufreinigungsschritt ist das quartäre Amin bzw. kationische Tensid dann fertig. Insgesamt braucht es also vier chemische Reaktionen und mindestens fünf Reinigungsschritte, um vom natürlichen Rohstoff zum Inhaltsstoff für Weichspüler zu kommen. Nach so viel Aufwand und chemischen Umbau-Aktionen bleibt vom Charakter des ursprünglichen Rohstoffs, ob nun tierisch oder pflanzlich, im Endprodukt nichts mehr übrig.

Weichspüler und vegan? Eine Frage der Definition!

Weichspüler mögen also nicht vegan sein (wenn man „vegan“ denn streng als „ohne Tierprodukte“ definiert). Aber dafür müssen keine Tiere sterben! (Denn die werden für Steak und Hamburger geschlachtet.) So lange ein erheblicher Teil der Menschheit also Fleisch isst, ist es (nicht nur) in meinen Augen wesentlich nachhaltiger, Chemikalien aus dem zu produzieren, was soundso anfällt, als unnötig Ressourcen und Energie aufzuwenden sowie Pestizid- und ähnliche Belastung zu riskieren, um extra pflanzliche Rohstoffe zu produzieren.

Wenn man „vegan“ mit Hintergedanken an Umwelt, Tierschutz und Nachhaltigkeit als „dafür müssen keine Tiere sterben“ bzw. „verbraucht minimale Ressourcen“ definiert, könnte man selbst die Produkte aus tierischen Rohstoffen guten Gewissens als ‚vegan‘ bezeichnen.

Weitere Nachteile von Weichspülern

  • In manchen Textilien können Weichspüler ähnliche Probleme machen wie ihre Verwandten in den Haar-Conditionern: Sie lagern sich auf den Geweben ab (das ist ja ihre Funktion!) und „verkleben“ bzw. „verschliessen“ sie so, dass ihre Durchlässigkeit für andere Stoffe beeinträchtigt wird. Das ist vor allem bei Funktionstextilien („atmungsaktive“ Sportkleidung) oder Daunen ein Problem.
  • Tatsächlich können Weichspüler sich auch in ähnlicher Weise auf den Oberflächen in der Waschmaschine ablagern und zu einem behaglichen Zuhause für Bakterien und Pilze werden (von denen dann der unangenehme Geruch der Maschine herrührt).
  • Unterschiedliche Ladungen ziehen sich an: So bilden kationische Tenside mit den herkömmlichen anionischen Waschmittel-Tensiden schwer wasserlösliche Aggregate. So ist bei der nächsten Wäsche nach dem Weichspülereinsatz mehr Waschmittel nötig als ohne.
  • Duftstoffe (und weitere Zusätze) können Allergien auslösen (müssen aber nicht). Grundsätzlich sind Allergien bzw. die Neigung dazu von Mensch zu Mensch sehr verschieden, sodass kaum vorauszusagen ist, wer auf was empfindlich reagiert.

Was (oder wem) nutzen Weichspüler dann überhaupt?

Mangelnde biologische Abbaubarkeit, unliebsame Rohstoffe, Probleme bei Funktionstextilien, Keime in der Waschmaschine und allergenes Potential… das ist eine lange Liste von Nachteilen, wenn die Wirkung von Weichspülern sich bloss auf das Verhindern der zeitlich begrenzten Trockenstarre, Duft und etwas Antistatik beläuft.

Ich habe allerdings von Menschen gelesen, die womöglich nicht darauf warten können/mögen, dass eine Trockenstarre von selbst verfliegt: Nämlich solche, die an Neurodermitis oder anderen Erkrankungen mit leicht reizbarer Haut leiden. Solchen sollen Hautärzte tatsächlich den Einsatz von Weichspülern empfehlen, wenn damit Reizungen durch „kratzige“ Textilien zuvorgekommen werden kann.

Aus dem eigenen Familienkreis kenne ich Neurodermitis nur mit allergischem Ursprung, wenngleich wohl Nahrungsmittelproteine (Milch, Ei) die Ursache waren. Nichts desto trotz erscheint es mir hier sinnvoll, von Person zu Person abzuwägen, inwieweit der Nutzen eines Weichspülers mögliche Reaktionen auf seine Inhaltsstoffe überwiegt.

Gibt es denn (Hausmittel-)Alternativen zu industriellem Weichspüler?

In den Haushaltsgruppen und auf zahllosen Websites werden immer wieder vor allem Essig, Natron/Soda (oder gleich beide miteinander) und/oder ätherische Öle als Weichspüler-Ersatz empfohlen. Doch was taugen diese Alternativen?

Aus Chemikersicht gar nichts:

  • Essig: Enthält Essigsäure – die reagiert mit dem schwach basischen Kalk in (hartem) Waschwasser. Essig trägt also zur Wasserenthärtung bei und kann allenfalls dazu beitragen, den Verbrauch von Waschmittel durch die Entstehung von Kalkseifen oder Kalkablagerungen auf den Textilien zu verhindern. Heute Waschmittel enthalten allerdings bereits Enthärter (vor allem Zeolith A), die das übernehmen. Und zu viel Essigsäure in der Maschine kann um ungünstigsten Fall ihre Bauteile angreifen.
  • Natron und Soda (Natriumhydrogencarbonat, NaHCO3 bzw. Natriumcarbonat Na2CO3): Sind basisch und und fluoreszieren in UV-Licht. Letztere Eigenschaft macht sie zu optischen Aufhellern: Sie lassen die Wäsche weisser erscheinen (zumindest theoretisch: Die Stiftung Warentest hat 2013 keinen solchen Effekt nachweisen können) – machen sie aber nicht weicher. Ausserdem sind Basen ähnlich wie Säuren aggressiv: Nicht alle Fasern vertragen sie so ohne weiteres.
  • Essig und Natron oder Soda: Reagieren miteinander. Die dabei freigesetzte Kohlensäure zerfällt in CO2-Gas und Wasser. So gehen sowohl die enthärtende Wirkung des Essigs als auch die Fluoreszenz verloren.
  • Ätherische Öle: Werden gerne als „natürlicher“ Ersatz für die Duftstoffe in Weichspülern genannt. Dabei geht jedoch gerne vergessen, dass auch und gerade die Bestandteile ätherischer Öle Allergien auslösen können (viele der fraglichen Duftstoffe in industriellen Produkten kommen sogar auch in ätherischen Ölen vor oder leiten sich davon ab!). Dazu kommt: Die Zusammensetzung von Naturprodukten wie ätherischen Ölen ist weder vollständig bekannt noch garantiert immer gleich – anders als bei „chemischen“ Zubereitungen, die stets bis ins Detail bekannt sind. Daher solltet ihr beim Einsatz fortwährend genau und von Person zu Person beobachten, wer was verträgt und was nicht.  

Wie ich als Chemikerin vorgehe

Da in meinem Haushalt niemand unter Neurodermitis oder ähnlichem leidet, ist mir die Liste der Nachteile von Weichspülern gegenüber ihrem Nutzen viel zu lang.

Ich wasche daher meine Wäsche nur mit einem Vollwaschmittel in Pulverform und verzichte auf Weichspüler. Frottee-Handtücher (die ich nur trocknergeeignet kaufe) trockne ich im Wäschetrockner, denn durch dessen Gebläse wird die Trockenstarre von vorneherein verhindert. Von meiner Bluse aus Viskose (und anderer betroffener Kleidung) weiss ich überdies inzwischen, dass die Trockenstarre von selbst so vollständig vergeht, dass ich die Bluse nicht einmal bügeln muss.

Und wie wascht ihr eure Wäsche? Verwendet ihr Weichspüler? Habt ihr einen besonderen Nutzen davon? Oder warum verwendet ihr sie gerade nicht?

Belebtes Wasser ist unwirksam - kein Gesundbrunnen, sondern Fantasieprodukt

Wenn ihr meine Kanäle verfolgt, habt ihr es wahrscheinlich schon mitbekommen: Ich schreibe an einem Mitmachbuch für Forscherkinder – über Wasser. Das ist schliesslich ein ganz besonderer Stoff und megaspannend. Da bleibt es nicht aus, dass Wasser allerorts, auch in den sozialen Medien, meine besondere Aufmerksamkeit weckt. So ist es mir unlängst in einer Kombination begegnet, die spontanes Chemiker-Augenrollen bewirkte: Als belebtes Wasser. Oder war es energetisiertes Wasser? Vitalisiertes Wasser? Aktiviertes Wasser? Magnetisiertes Wasser? Hexagonales Wasser? Oder sogar Grander-Wasser?

Merkt ihr was? So viele verschiedene und nichtssagende Begriffe für praktisch das gleiche. Und das ist nur eine Auswahl der Existierenden! Allein auf Psiram habe ich eine Liste mit 144 Firmen und Produktlinien rund um „verbessertes“ Wasser in vermutlich ebenso vielen Variationen gefunden! Also, worum geht es hier eigentlich? Um Wasser, das in irgendeiner Weise verbessert sein – und folglich positive Wirkungen auf uns haben soll.

Wie sollen wir an belebtes Wasser gelangen?

Die erwähnten Hersteller bieten entweder Gerätschaften und Anlagen zur „Verbesserung“ von Leitungswasser im eigenen Haushalt an oder sie verkaufen es fixfertig , zum Beispiel in Getränkeflaschen. Auffällig ist bei praktisch all diesen Produkten der hohe bis überrissene Preis.

Brauchen wir verbessertes bzw. belebtes Wasser?

Nein. In der Schweiz, Deutschland und Österreich geniessen wir das Privileg, einwandfreies Leitungswasser zu haben, das wir ohne Bedenken trinken können. In der Schweiz gilt das überdies für einen Grossteil der öffentlichen Brunnen.  Ausserdem können wir jederzeit ebenso einwandfreies Mineralwasser in Supermärkten kaufen. Und Leitungs- wie Mineralwasser bieten alles, was wir vom Wasser zum Gesundbleiben brauchen.

Was kann belebtes Wasser dann besser?

Ihr ahnt es sicher schon: Nichts. Zumindest nicht über einen Placeboeffekt hinaus. Und den könnt ihr wesentlich billiger haben.

Ist belebtes Wasser dann womöglich gefährlich?

Nicht direkt. Ausser für euren Geldbeutel. Denn Produkte rund um belebtes Wasser sind in der Regel mächtig teuer. Und bewirken, wie erwähnt, nichts.

Indirekt können sie aber zum Problem werden. Nämlich dann, wenn sie ein falsches Gefühl von Sicherheit vermitteln („das Wasser hält mich schon gesund“). Wenn aus diesem Sicherheitsgefühl heraus Arztbesuche verzögert, Medikamente nicht genommen oder andere wichtige Massnahmen vernachlässigt werden (Infektionsschutz ist zur Zeit ja ein ganz grosses Thema!), kann das schwerwiegende oder im schlimmsten Fall tödliche Folgen haben.

Aus diesem Anlass schreibe ich den Artikel: Nicht nur um eurer Geldbeutel willen, sondern vor allem, um euch dabei zu helfen, wirklich Gutes für die Gesundheit eurer Familie zu tun.

Um euch zu zeigen, warum belebtes Wasser nicht wirken kann, habe ich zunächst eine kleine Einführung in die Chemie des Wassers für euch.

Kleine Wasserkunde

1. Wasser ist eine Verbindung

Wasser ist einer von vielen Stoffen, aus denen unsere Welt aufgebaut ist. Dabei ist es zweifellos einer der wichtigsten Stoffe unserer Alltagswelt. Nahezu jeder von euch wird die chemische Formel, genauer die Summenformel, von Wasser schon einmal gesehen haben: H2O.

Diese Formel verrät uns schon eine ganze Menge über diesen Stoff. Sie sagt uns: Wasser besteht aus Molekülen. Ein Wassermolekül besteht wiederum aus zwei Wasserstoffatomen und einem Sauerstoffatom. Das bedeutet, Wasser ist kein Element, wie antike Philosophen annahmen, sondern eine chemische Verbindung. Ein chemisches Element besteht nämlich nur aus einer Sorte von Atomen – Wasser aber aus zwei Atomsorten.

2. Wassermoleküle sind gewinkelt

Die Atome in einem Molekül sind über Elektronenpaarbindungen miteinander verknüpft. Zwei Elektronen bilden eine solche Bindung. Die Regeln der Chemie besagen, dass ein Sauerstoffatom zwei Bindungen bilden kann und überdies noch zwei weitere, nichtbindende Elektronenpaare hat. Ein Wasserstoffatom kann dagegen nur eine Bindung bilden. Daraus ergibt sich die Strukturformel für Wasser:

Wassermolekül: Lewisformel und Modell
Links: Strukturformel für Wasser, rechts ein Kugel-Stab-Modell des Wassermoleküls

Warum stehen die drei Atome nicht einfach in einer Reihe? Jedes Elektron trägt eine negative elektrische Ladung. Und gleiche elektrische Ladungen stossen einander ab. So gehen die vier äusseren Elektronenpaare – zwei Bindungen und zwei nichtbindende Paare – des Sauerstoffs auf grösstmöglichen Abstand zueinander. Und der entspricht annähernd der Nachbildung eines Tetraeders (einer regelmässigen dreieckigen Pyramide). Das Sauerstoffatom befindet sich im Zentrum dieser Pyramide, die beiden Wasserstoffatome und die Enden der nichtbindenden Elektronenpaare an den Ecken. Zeichnet man nun einen Längsschnitt, auf dem alle drei Atome liegen, durch das Gebilde, erhält man die gewinkelte Strukturformel des Wassermoleküls.

Wassermolekül mit nichtbindenden Elektronenpaaren - die Struktur erinnert an einen Tetraeder
Die gelben Kugeln stellen die nichtbindenden Elektronenpaare dieses Wassermoleküls dar. In dieser Anordnung sind die vier gelben und weissen Kugeln weitestmöglich voneinander entfernt!

3. Wassermoleküle sind elektrische Dipole

Nun verhält es sich so, dass Sauerstoffatome die Elektronen, auch jene in den Bindungen, viel stärker zu sich hinziehen als Wasserstoffatome. Deshalb ist in der Nähe des Sauerstoff-Atoms im Wassermolekül sehr viel mehr von den bindenden Elektronen anzutreffen als in der Nähe der Wasserstoffatome. Da jedes Elektron eine negative elektrische Ladung trägt, heisst das, dass am Sauerstoffatom mehr negative Ladung zu finden ist, als dort sein sollte, während an den Wasserstoffatomen zu wenig negative Ladung zu finden ist. „Mehr“ und „zu wenig“ stehen dabei für Ladungsmengen, die kleiner als die Gesamtladung eines Elektrons sind. 

Nicht desto trotz bedeutet das, dass der Scheitel des Wassermoleküls (mit dem Sauerstoffatom) ein wenig negativ geladen ist, während sein „breites“ Ende mit den Wasserstoffatomen ein wenig positiv geladen ist (denn die positive Ladung der Atomkerne macht sich wegen des Elektronenmangels bemerkbar). Ein Wassermolekül hat also zwei elektrische Pole – deshalb nennt man es einen elektrischen Dipol.

Wasserteilchen mit zwei Ladungs-Schwerpunkten
Ein Wassermolekül trägt zwei elektrische Ladungen: Die negative Seite (-) ist rot, die positive Seite (+) ist blau schattiert.

Verschiedene elektrische Ladungen aber ziehen einander an. So zieht der negativ geladene Scheitel eines Wassermoleküls unweigerlich die Breitseite seines nächsten Nachbarn an. Ebenso werden Wassermoleküle von anderen elektrischen Polen angezogen. Das könnt ihr mit diesem Experiment ganz leicht zu Hause zeigen!

Wasserteilchen: Entgegengesetzte Ladungen ziehen sich an.

4. Wasser ist sowohl eine Säure als auch eine Base

Die sehr „schiefe“ Verteilung der Elektronen im Wassermolekül führt aber nicht nur zu zwei elektrischen Polen, sondern auch dazu, dass die Bindungen zwischen Sauerstoff- und Wasserstoffatomen sehr brüchig sind. Ein Wassermolekül kann also sehr leicht einen Wasserstoffatomkern (ein H+-Ion) verlieren. Damit ist Wasser eine Säure. Ebensogut kann ein Sauerstoffatom eines seiner nichtbindenden Elektronenpaare verwenden, um solch ein verlorenes H+-Ion zu binden.  Damit ist Wasser eine Base.

Von einem Wassermolekül, das ein H+-Ion verloren hat, bleibt ein Hydroxid-Ion (OH):

Ein Wassermolekül, das ein verlorenes H+-Ion aufnimmt, wird damit zum Hydronium-Ion (H3O+):

Tatsächlich kommt es ständig vor, dass ein Wassermolekül ein H+-Ion verliert, welches in einem anderen Wassermolekül Unterschlupf findet:

Ebenso kann das H3O+-Ion das zusätzliche H+-Ion wieder zurückgeben. So gibt es in einer Menge Wasser ein ständiges Herumgereiche von H+-Ionen zwischen den Wassermolekülen. Insgesamt findet man in einem Liter reinem Wasser zu jedem Zeitpunkt 0,0000001 mol oder 10-7 H3O+ – und ebenso viele OH -Ionen. Der Exponent der Zahl der H+-Ionen (als Zehnerpotenz) in einem Liter Flüssigkeit mit umgekehrtem Vorzeichen ist nichts anderes als der pH-Wert. Reines Wasser hat also stets einen pH-Wert von 7.

5. Wassermoleküle können Wasserstoffbrücken bilden

Allerdings wäre das Ganze viel zu einfach, wenn man so strikt zwischen Bindung und keiner Bindung unterscheiden könnte. Das kann man nämlich nicht. Die Elektronen einer Bindung zwischen Sauerstoff- und Wasserstoff-Atom im Wassermolekül sind nämlich so ungleich verteilt, dass ein entblösster Wasserstoffkern sich in die dichte Elektronenhülle eines Sauerstoffatoms im Nachbarmolekül „einkuscheln“ kann, ohne sich dazu von „seinem“ Wassermolekül lösen zu müssen. Das nennen die Chemiker eine Wasserstoffbrücken-Bindung.

Das Resultat ist eine Anziehung zwischen Wassermolekülen, die noch stärker ist als die Anziehung zwischen ihren unterschiedlichen Ladungen (aber viel weniger stark als eine echte Elektronenpaarbindung). Sie zeigt sich zum Beispiel in dem enorm hohen Siedepunkt (100°C) von Wasser – da diese starke Anziehung überwunden werden muss, wenn das Wasser gasförmig werden will. Zum Vergleich: Der sehr eng verwandte Schwefelwasserstoff, H2S, der keine Wasserstoffbrücken bildet, siedet schon bei -60°C!

6. Wasserstoffbrücken entstehen zufällig und sind extrem kurzlebig

Die Darstellung von flüssigem Wasser als H2O ist somit im Grunde genommen eine Vereinfachung. Tatsächlich besteht flüssiges Wasser aus einem wilden Gemisch von Atomen, die sich mal als H2O, mal als H3O+ bzw. OH gruppieren und sich noch viel öfter zu irgendetwas dazwischen zusammenkuscheln. Dabei kann es passieren, dass einige wenige Atome sich zu gut strukturierten Gruppen, sogenannten Clustern, zusammenrotten.

Aber dieser Austausch findet an jedem Ort im Wasser gleichzeitig und im Picosekundentakt statt. Das heisst, würde man ein Foto von den Bindungen zwischen Atomen in flüssigem Wasser machen, dann sähe ein zweites Bild davon, nur 0,000 000 000 001 Sekunden später aufgenommen, völlig anders aus – einschliesslich komplett anderer Molekül-Cluster.

Und das geschieht ganz spontan und zufällig. Die Triebkraft dafür ist zum Einen Wärmeenergie. Mit über 273°C über dem absoluten Nullpunkt (bei Atmosphärendruck) ist flüssiges Wasser nämlich immer ziemlich warm, auch wenn unsere Körper oft anderer Meinung sind. Und zum Anderen hilft das absolute Chaos, das der ständige Umbau mit sich bringt. Die Natur liebt nämlich Chaos – von Physikern und Chemikern „Entropie“ genannt – so sehr, dass sie ohne Energie von aussen ganz von selbst nach grösstmöglicher Unordnung strebt.

Warum man Wasser nicht beleben kann

Die meisten Anbieter in der „Belebtes-Wasser“-Branche behaupten, sie könnten flüssiges Wasser „besser“ machen, indem sie ihm irgendwie eine geordnetere Struktur geben. Einige fügen dem Wasser dafür Energie zu, andere berufen sich darauf, genau das nicht zu tun. Eines haben jedoch alle gemeinsam: Es kommt nichts dabei herum. Denn:

Wasser kann man nicht mit Energieeinsatz „beleben“, indem

  • Man man es über eine eingelegte Antenne mit elektromagnetischen Wellen berieselt. Würde man das mit Mikrowellen (der richtigen Frequenz bzw. Wellenlänge) machen, würde das Wasser allenfalls warm (so funktioniert ein Mikrowellenherd). Denn Mikrowellen der passenden Länge können elektrische Dipole wie Wassermoleküle in Drehung versetzen. Und die nehmen wir, wie jede andere ungerichtete Bewegung von Teilchen, als Wärme wahr. Infrarotwellen, die energiereicher als Mikrowellen sind, können ebenfalls wärmen – indem sie die Bindungen in Molekülen zum Schwingen bringen. Elektromagnetische Wellen mit weniger Energie bewirken hingegen nichts.
  • Man es mittels Elektrolyse ionisiert. Das mag zwar vorstellbar sein (wenn man vermeiden kann, dass statt irgendwelcher Ionen Moleküle von Wasserstoff- und Sauerstoff-Gas entstehen). Allerdings sorgt der stetige Austausch zwischen den Wasserteilchen dafür, dass sich nach dem Ausstellen der Elektrolysevorrichtung innert Picosekunden das oben erwähnte Gleichgewicht zwischen Wasser, H3O+– und OH-Ionen wieder einstellt. Mit anderen Worten: So schnell, wie der pH-Wert von Wasser – sollte es ionisiert worden sein – wieder 7 ist, kann man es unmöglich trinken – geschweige denn anschauen.
  • Man es ebenfalls durch Elektrolyse mit Wasserstoff anreichert. „Wasserstoffwasser“ ist besonders in Japan als Fertigprodukt im Supermarkt beliebt. Grundsätzlich lässt sich Wasserstoff durch Elektrolyse von Wasser herstellen. Allerdings löst der sich nicht besonders gut in Wasser und kann in die allermeisten Festkörper (z.B Getränkeflaschen) problemlos ein- und durch sie hindurch wandern. So lässt sich Wasser nicht nur kaum mit Wasserstoff anreichern, sondern überdies auch kaum lagern. Dazu kommt, dass der menschliche Körper elementaren Wasserstoff (H2) gar nicht verwerten kann.
  • Man Wasser in ein (unveränderliches) Magnetfeld einbringt. Richtig ist: Elektrisch geladene Teilchen in Bewegung ändern im Magnetfeld ihre Bewegungsrichtung. Das gilt aber nur für Teilchen, die als Ganzes eine merkliche Ladung tragen. Wassermoleküle tragen zwar Ladungen, aber jedes von ihnen hat zwei gleich grosse, aber entgegengesetzte Ladungen, die einander aufheben. Von aussen gesehen bleibt so keine Ladung, auf die das Magnetfeld einen Einfluss haben könnte. Überdies ist Wasser ausschliesslich diamagnetisch und lässt sich daher nicht magnetisieren (Was hinter Dia-, Para- und Ferro-Magnetismus steckt erfahrt hier hier).
  • Man Edelsteine hineinlegt, die irgendwelche „Schwingungen“ oder „Informationen“ in das Wasser übertragen sollen. Die einzigen Schwingungen, die so übertragen werden können, sind jene Bewegungen, die wir als Wärme wahrnehmen. Würde man die Steine vorher erhitzen, könnte man so allenfalls das Wasser erwärmen (so funktionieren ein Tauchsieder oder der „heisse Stein“ im Restaurant).

Wasser kann man erst recht nicht ohne Energiezufuhr beleben, indem

  • Man in irgendeiner anderen Weise „Informationen“, „Schwingungen“ oder „Energie“ auf das Wasser überträgt (belebtes Wasser ‚im eigentlichen Sinn‘). Wie ihr in der kleinen Wasserkunde gelernt habt, hat flüssiges Wasser eine äusserst unstete Struktur: Seine Atome gruppieren sich in allerkürzesten Zeitabständen laufend neu. Das macht es zur Speicherung von Information für länger als 0,000 000 000 001 Sekunden vollkommen ungeeignet.

Kommt dazu – wie so oft – der ausdrückliche Verzicht auf Energie von aussen, gibt es zudem ein unlösbares Problem mit der Thermodynamik. Deren zweiter Hauptsatz besagt nämlich, dass die Schaffung von Ordnung in einem geschlossenen System ohne das Einbringen von Energie einfach nicht möglich ist. Und eine Struktur (z.B. in Form gespeicherter „Information“) in vormals chaotischem Wasser zu erzeugen, heisst Ordnung schaffen.

Das gilt gleichermassen für alle Spielarten belebten Wassers, ob sie nun belebtes Wasser, aktiviertes, vitalisiertes, levitiertes Wasser, „Grander-Wasser“ oder sonstwie heissen.

Aber der „Stand der Wissenschaft“ ist doch nicht unumstösslich?

Stimmt. Aber ein Grossteil dessen, was wir über Wasser wissen, ist so deutlich belegt, dass dort keine grossen Anpassungen des heutigen „Lehrbuchwissens“ mehr zu erwarten sind. Das gilt insbesondere für das unstete Betragen der Teilchen in flüssigem Wasser. Wir mögen zwar noch längst nicht alles über die erwähnten Wassercluster wissen. Doch das liegt eben gerade daran, dass diese Strukturen so kurzlebig sind, dass Wissenschaftler sie selbst mit hochtechnischen Apparaturen kaum vermessen können. Und ebendiese Kurzlebigkeit macht das Speichern von jedweder „Information“ in Wasser unmöglich.

Auch die Gesetze der Thermodynamik sind heute derart gut belegt, dass wir sie in unserer Welt getrost als unumstösslich annehmen können. Sollten Physiker dennoch jemals einen Weg finden, der am 2. Hauptsatz vorbei führt, dann nicht in der Welt, wie wir sie kennen, sondern unter höchst exotischen Bedingungen, die weit ausserhalb unserer persönlichen Reichweite liegen. Also nicht in unserem eigenen Keller oder einer mystischen Getränkefabrik.

Ausserdem haben sich die Wissenschaftler, die so gerne auf belastbare Studien pochen, sich nicht lumpen lassen. So gibt es auch Untersuchungen zur Wirksamkeit von belebtem Wasser auf Mensch, Tier und Pflanze – unabhängig von der Frage, ob sie mit heutigem Wissen theoretisch erklärbar wäre. Und hat man – unter belastbaren (also methodisch einwandfreien und wiederholbaren) Versuchsbedingungen – eine Wirkung gefunden? Nein.

Es gibt also weder eine nachweisliche Wirkung noch eine schlüssige Theorie, wie sie zustandekommen könnte. Mit anderen Worten: Belebtes Wasser ist demnach mit höchster Wahrscheinlichkeit ein reines Fantasieprodukt.

Wie ihr derartige Fantasieprodukte oder -angebote erkennen könnt

Einige auffällige Merkmale hat belebtes Wasser mit vielen anderen fragwürdigen Produkten und Angeboten im Gesundheitsbereich gemein: Es wird ihm eine so vielfältige Heilkraft nachgesagt, dass es leicht als Wundermittel durchgehen könnte.

  • Was gleichermassen gegen alles von Hauterkrankungen über Magenbeschwerden, Migräne, Depressionen u.v.a.m. bis hin zu Krebs hilft, kann nicht wirklich nützen. Verschiedene Krankheiten haben verschiedene Ursachen, die verschiedene Behandlungen erfordern. Darüber hinaus ist in der Schweiz und Deutschland die Werbung für Wasser mit Heilversprechen gesetztlich verboten, was eine solche um so unseriöser macht.
  • Ähnliches gilt für Angaben wie ‚hilft bei der „Entgiftung“ (Entschlackung,…). Die Notwendigkeit, Giftstoffe oder „Schlacken“ aus unserem Körper zu entfernen, ist ebenfalls ein Fantasieprodukt entsprechender Anbieter (denn das besorgen gesunde Leber und Nieren ganz allein).
  • Beliebte „Buzzwörter“ aus dem Alternativheilkunde-Bereich in Beschreibungen können ein Hinweis sein, dass dem Produkt das wissenschaftliche Fundament fehlt: Neben den genannten Synonymen für belebtes Wasser bzw. Wasserbelebung sind das z.B. „Schwingungen„, „Energien“ (Naturwissenschaftler verwenden „Energie“ nie in der Plural!), oder „feinstofflich„, die allesamt bedeutungslose Worthülsen sind. Dazu kommen die Namen Nicola Tesla, wenn es um mysteriöse Technik geht, oder – speziell im Wasserbereich – Gerald H. Pollack oder Masaru Emoto, auf deren nicht haltbare Theorien sich viele „Wasserbeleber“ beziehen, sowie Johann Grander.

Dazu kommen einige eigene Merkmale von Produkten rund um „verbessertes“ Wasser.

  • Das Verbot von Werbung für Wasser und Wasseraufbereitungsgeräte mit Heilversprechen in einem Grossteil des D-A-CH-Raums umgehen viele Anbieter, indem sie angebliche Wirkungen ihres Produkts nur über Kundenaussagen „kommunizieren“. Das geht über Kundenbewertungen und Testimonials oder Mund-zu-Mund-Propaganda. Hat euch „nur“ jemand von einem tollen Gerät/Produkt/Angebot erzählt? Findet ihr Aussagen zu gesundheitlichen Wirkungen nur von anderen Kunden und nicht vom Hersteller selbst? Dann ist Vorsicht angesagt!
  • Wirkungslose Anlagen und Geräte zur „Verbesserung“ von Wasser wie auch fixfertig belebtes Wasser werden häufig zu horrenden Preisen angeboten. Wenn ihr ein fragwürdiges Angebot unter die Lupe nehmen möchtet, vergleicht es einmal mit ähnlichen Produkten ohne „Esoterik“-Label. Fixfertig belebtes Wasser also mit Mineralwasser, als besonders wirksam oder geeignet deklarierte Edelsteine mit den gleichen Steinen ohne solche Attribute beim Mineralienhändler, Elektrokleingeräte mit Haushaltsgeräten aus ähnlichen Bestandteilen, Geräte zum Einbau ins Eigenheim mit „herkömmlichen“ Wasserfiltern für die Trinkwasserzuleitung. Beträgt der Unterschied ein Vielfaches, ist da in der Regel etwas faul.

Wenn euch ein Angebot mit solchen Merkmalen über den Weg läuft, verzichtet guten Gewissens darauf. Dann könnt ihr das Geld für andere Dinge einsetzen, die wirklich gesundheitsfördernd sind: Für einen schönen Familienurlaub zum Beispiel, Mitgliedschaften im Sportverein, Musikstunden, oder einfach für abwechslungsreiches Essen.

Und wenn es dazu schon zu spät ist?

Ihr habt bereits eine Anlage zur Wasserbelebung im Keller? Oder ist der bereits in ein Lager für fixfertig belebtes Wasser umgewandelt?

Zunächst einmal: Ihr seid damit nicht allein. Selbst Betreiber von Schwimmbädern, Spitäler oder eine österreichische Gewerkschaft haben sich schon von solchen Angeboten ködern lassen und eine Menge Geld verbraten. Die können nämlich – ganz offensichtlich – ziemlich verlockend sein und auf den ersten Blick sehr seriös wirken. Bloss zeigt das nicht, wie nützlich die Produkte sind, sondern die Geschäftstüchtigkeit ihrer Anbieter. Und die mag nicht zuletzt daher rühren, dass die Hersteller und Vertreiber selbst an die Wirksamkeit ihrer Produkte glauben (zumindest konnten selbst Anwälte vor Gericht ihnen bislang nichts Gegenteiliges nachweisen).

Besonders wenn Mund-zu-Mund-Propaganda ins Spiel kommt – im schlimmsten Fall innerhalb einer eingeschworenen Community rund um Hersteller und Produkt oder im eigenen Freundeskreis – kann der Einfluss bzw. Druck von „aussen“ auf eure Entscheidungen immens werden. Und wer will es sich schon mit der besten Freundin oder dem netten Forum verscherzen, weil er ein ja soo nützliches Ding kategorisch ablehnt?

Wirksames von Fantasieprodukten zu unterscheiden ist manchmal schwierig

Dazu kommt, dass viele Produkte, Angebote und auch Literatur so seriös und „medizinisch“ aussehen, dass es für Laien echt schwierig sein kann, wirklich Sinnvolles von Fantasieprodukten zu unterscheiden.

Selbst ich als Chemikerin habe einmal mit grossem Interesse in einem populärwissenschaftlichen Buch von Gerald H. Pollack gelesen. Das fiel mir in der Stadtbibliothek auf der Suche nach Literatur über Wasser in die Hände. Das las sich spannend und erst einmal schlüssig – davon abgesehen, dass ich von den dargestellten Theorien und Phänomenen weder in der Schule noch im Studium gehört hatte. Doch was wäre ich für eine Chemikerin, würde ich, ein paar Jahre aus dem Uniumfeld draussen, neue Forschungsergebnisse von vorneherein als unmöglich abstempeln? So fühlte ich mich selbst mit Chemie-Diplom nicht in der Lage, das Buch aus dem Stand sicher einzuordnen. Dabei haben mir erst weitere Recherchen geholfen.

Was tun, wenn das Geld weg ist?

Ist das belebte Wasser erst einmal im Haus und das Geld weg, wenn eure Zweifel überhand nehmen, verbucht das Ganze am besten als Gelegenheit zum Lernen. Wie mein Vater immer sagt: Geld ist den grossen Kummer nicht wert. Und ein Grund, sich zu schämen oder hämische Bemerkungen anhören zu müssen, ist das Ganze meines achtens auch nicht (dahingehend können Anhänger der Skeptiker-Szene im Umgang mit Anhängern solcher Fantasien oft noch eine Menge lernen).

Wichtig ist: Selbstreflexion

Stattdessen fragt euch, was euch wirklich dazu gebracht hat, euch auf belebtes Wasser einzulassen und allenfalls viel Geld dafür auszugeben? Hattet ihr wirklich ein eigenes Bedürfnis danach (z.B. um eine Krankheit zu lindern)? Da belebtes Wasser nachweislich nicht wirkt: Überlegt euch – was fehlt euch wirklich (oder hat gefehlt)? Welche andere(n) Massnahme(n) könnte(n) für eine scheinbare Wirkung des Wassers verantwortlich sein?

Oder habt ihr euch unter dem Einfluss anderer entschieden – Familie, Freunde, (Online-)Community? Wie könnt ihr euch solchen Einflüssen künftig entziehen? Und was bedeuten euch die betreffenden Personen oder Gruppen wirklich? Denn im schlimmsten Fall, wenn ein Druck sich nicht abwehren lässt, kann eine Trennung von ihnen der beste Ausweg sein.

Was ihr in jedem Fall tun könnt

Ob ihr nun selbst in die Falle hineingetappt seid oder nicht, ihr könnt eure Mitmenschen davor bewahren, auf solche sinnlosen Angebote einzugehen.

Dabei erachte ich dies als ganz besonders wichtig:

Nehmt euer Gegenüber ernst. Hinter der Entwicklung unsinniger Glaubensvorstellungen stecken praktisch immer Bedürfnisse oder Ängste, die befriedigt oder gelöst werden wollen, und oft ein erheblicher Einfluss eines äusseren Umfelds (Familie, Freundeskreis, Onlinecommunity,…), der eben diese Bedürfnisse bedient.

Ermuntert eure Mitmenschen, diese Bedürfnisse zu ergründen und sich die unter „Selbstreflexion“ vorgeschlagenen Fragen zu stellen.

Verkneift euch, wenn ihr euch zu den „Skeptikern“ zählt, hämische Bemerkungen oder Bezeichnungen. Zeigt den Betroffenen stattdessen, dass ihr sie als Menschen wertschätzt und gebt ihnen so einen Anreiz, die vermeintliche Zuflucht fragwürdiger Glaubenssätze oder Umfelder zu verlassen.

Und tut das vor allem von Anfang an. Denn je früher Anhänger von Glaubenssätzen, wie jenen um belebtes Wasser, Alternativen zu ihren „Alternativen“ aufgezeigt bekommen, desto höher ist die Chance, sie noch zu erreichen.

Auch wichtig ist: Weitere Verbreitung verhindern

Erinnert euch daran, wie diese fragwürdigen Produkte verbreitet werden. Nämlich über Mund-zu-Mund-Propaganda.

Wenn ihr eure Mitmenschen davor bewahren wollt, auf den Hype um belebtes Wasser (oder andere Fantasie-Produkte) hereinzufallen, dann hört, falls ihr das je getan habt, in jedem Fall auf, sie weiter zu verbreiten und schön zu reden. Oder fangt erst gar nicht damit an. Entfernt oder ändert allfällige positive Bewertungen im Internet, sofern ihr das selbst könnt (Testimonials, die Firmen selbst auf ihren Seiten einfügen, werden diese kaum wieder löschen).

Denn was andere auch behaupten: Belebtes Wasser wirkt nicht über einen Placeboeffekt hinaus.

Besonders lobenswert ist natürlich, wenn ihr euch aktiv für die Aufklärung rund um belebtes Wasser und Co. einsetzt. Erst recht, wenn ihr eine Entscheidungsposition bezüglich der Weiterverbreitung fragwürdiger (und nicht fragwürdiger) Angebote innehabt – sei es auf eurer eigenen Website, in den „grossen“ Medien, einschliesslich Magazinen von Krankenversichereren, Grossverteilern und anderen Branchen, oder gar in der Politik.

Dazu könnt ihr gerne diesen Artikel weiterverbreiten und findet weiteres Material in den Links darin. Zum Beispiel diesen Artikel, in dem Dr. Erich Eder, ein grosser Kritiker des „Grander-Wassers“, beschreibt, wie ihr eure Kritik so formulieren könnt, dass ihr möglichst kein juristisches Vorgehen der Anbieter belebten Wassers riskiert (und wie ihr damit umgehen könnt, falls es doch dazu kommt).

Scheut euch dabei nicht, euren eigenen Fehlentscheid einzugestehen, falls euch einer unterlaufen ist. Hört oder lest darüber hinweg, solltet ihr anfangs abfällige Bemerkungen und Kommentare kassieren. Und trennt euch rigoros von jenen, die sie nicht lassen können. Denn (nicht nur) in meinen Augen zeugt es von wahrer Grösse, seine Ansicht aufgrund neuer Erkenntnisse zu ändern und das auch kundzutun. Und letztendlich kann ein „ich habe das selbst durch, ich weiss, wovon ich rede“ eure Position nur stärken.

Seid ihr belebtem oder sonstwie „verbessertem“ Wasser auch schon begegnet? Wie geht ihr mit Leuten um, die darauf schwören oder/und zu seiner Verbreitung beitragen?

Silikone - Pro und Kontra - Nützlich oder gefährlich?

Der letzte Teil der Kunststoff-Serie in Keinsteins-Kiste ist einer ganz besonderen Familie von Kunststoffen gewidmet: Es geht um Silikone. Vor vielen Jahren ist mir diese Stoff-Gruppe im Studium zum ersten Mal begegnet, als ich vor den versammelten Kommilitonen und Dozenten einen Vortrag darüber halten durfte.

So war ich nun besonders neugierig, wie sich der Wissensstand rund um Silikone in den letzten eineinhalb Jahrzehnten verändert hat. Das ist nämlich eine wesentliche Eigenschaft von „Wissen“ im Sinne der Wissenschaft: Es ist nicht unverrückbar festgelegt, sondern kann durch neue Forschungsergebnisse ständig verändert – z.B. verbessert oder überholt – werden.

Deshalb konnte ich nicht einfach mein altes Vortrags-Skript als Grundlage für diesen Artikel hernehmen. Stattdessen habe ich dessen Kernaussagen neu recherchiert, um sie dem heutigen Stand entsprechen anzupassen. Und wie sich dabei zeigte, hat sich bezüglich der Eigenschaften der Silikone gar nicht so viel getan. Einzig in Punkto Abbaubarkeit ist man heute spürbar weniger optimistisch als vor 15 Jahren.

Die anderen Beiträge rund um Kunststoffe findet ihr übrigens hier:

Was sind Silikone?

Silikone sind ganz besondere Kunststoffe. Wie die anderen Materialien, die wir landläufig gern als „Plastik“ bezeichnen, bestehen auch sie aus Polymeren – also langen Molekülketten.  Doch die Molekülketten der Silikon-Ketten bestehen nicht wie die des üblichen „Plastiks“ aus Kohlenstoffatomen. Die sind nämlich nicht die einzigen Atome, die bis zu vier kovalente Bindungen eingehen und damit vielfältige Möglichkeiten zur Vernetzung und Verkettung bieten können.

Der Kohlenstoff hat nämlich einen nahen chemischen Verwandten: Das Element Silizium (Si). Ihr findet es im Periodensystem der Elemente direkt unter dem Kohlenstoff in der vierten Hauptgruppe (wer sich mit Chemie auskennt, weiss, dass verwandte Elemente in dieser Weise untereinander stehen). In Reinform glänzt Silizium wie ein Metall und findet als Rohstoff für Halbleiter und Solarzellen Verwendung. Daneben kann es jedoch wie Kohlenstoff vier kovalente Bindungen eingehen. Oder sogar etwas mehr.

Zum Beispiel in Silikonen (der Name verrät das enthaltene Element). So haben die Ketten der Silikone ein Rückgrat aus Silizium- und Sauerstoff-Atomen, die sich immer abwechseln. Das erinnert Mineralienfans nicht von ungefähr an Quarz (SiO2) und die verschiedenen Silikat-Minerale, die meistens ziemlich harte Steine sind.

Silizium-Sauerstoff-Bindungen sind nämlich ausserordentlich stabil. In ihnen ist nämlich mehr Elektronendichte versammelt, als für eine normale kovalente Bindung üblich ist. Damit hat eine Si-O-Bindung, die der Einfachheit und der Edelgasregel wegen als Einfachbindung dargestellt wird, tatsächlich etwas von einer Doppelbindung! Anders als die Doppelbindungen zwischen Sauerstoff- und Kohlenstoffatomen sind diese Bindungen in natürlicher Umgebung aber kaum reaktiv.

Brustimplantate aus Silikon
So sind Silikone legendär geworden: Als Brustimplantate! Die Aussenhülle besteht aus Silikonkautschuk, gefüllt sind sie mit Silikonöl. Moderne Implantate haben sogar zwei Hüllen, zwischen denen sich Kochsalzlösung befindet. So soll bestmöglich verhindert werden, dass Silikonöl durch einen Riss in den Körper laufen kann.

Sind Silikone organisch oder anorganisch?

Während jedes Siliziumatom im Silikon also zwei Bindungen zu den benachbarten Sauerstoffatomen hat, bleiben zwei weitere Bindungsstellen frei, um daran Kohlenwasserstoffgruppen zu binden, wie wir sie aus organischen Verbindungen kennen. Chemiker nennen die Silikone deshalb auch Poly(organo)siloxane. Der einfachste Vertreter dieser Gattung ist Poly(dimethyl)siloxan, in welchem jedes Siliziumatom zwei Methyl-, also CH3-Gruppen trägt.

Strukturformel für Polydimethylsiloxan
Poly(dimethyl)siloxan : Zwischen den beiden Enden befinden sich n gleichartige Glieder.

Damit sind Silikone sowohl anorganischer als auch organischer Natur – oder weder noch. Ihr Rückgrat enthält schliesslich keinen Kohlenstoff (und organische Verbindungen sind als alle Kohlenstoffverbindungen abzüglich einiger Ausnahmen definiert). Stattdessen ist es an (Halb-)Metalloxide angelehnt, die klassische anorganische Verbindungen sind. Die Seitenketten sind wiederum organisch, sodass Silikone auch nicht einfach als anorganisch bzw. mineralisch gelten können.

Silikone sind ein Kunstprodukt

So etwas gibt es in der Natur (meineswissens) nicht. Silikone sind denn auch vollkommen künstliche Produkte – und tragen die Bezeichnung „Kunststoff“ damit völlig zu Recht. Diese Künstlichkeit verleiht ihnen jedoch einzigartige und nützliche Eigenschaften, die dazu führen, dass Silikone in unserem Alltag heute nicht mehr wegzudenken sind.

Silikone haben Vor- und Nachteile

Wie jeder Stoff bzw. jede Stoffgruppe, den/die wir für irgendetwas verwenden, bringen auch die Eigenschaften von Silikonen sowohl Vor- als auch Nachteile mit sich. In meinen Augen wiegen die vorteilhaften Eigenschaften der Silikone gegenüber ihren Nachteilen jedoch viel schwerer als bei anderen Kunststoffen.

Vorteile von Silikonen

  • Sie sind chemisch und physiologisch inert, d.h. sehr reaktionsträge. Für etwas, das es in der Natur nicht gibt, kennt die (belebte) Natur auch keine Prozesse zur Verstoffwechselung oder Abwehr. Deshalb sind Silikone nach heutigem Stand ungiftig für Lebewesen!
  • Sie sind schwer entflammbar: Auch gegenüber Reaktionen in der unbelebten Umwelt sind Silikone widerstandsfähig – selbst bei Einfluss grosser Mengen Energie, die zum Entstehen von Feuer nötig sind.
  • Temperaturbeständigkeit: Silikone sind von etwa -40 bis 250°C stabil. Das sind wesentlich höhere Temperaturen, als praktisch alle anderen Alltagskunststoffe vertragen!
  • Silikone sind hydrophob: Sie bilden wasserabweisende Beschichtungen.

Nachteile

  • Silikone sind nur schwerlich biologisch abbaubar: Was die Natur nicht kennt, kann auch nicht von Lebewesen abgebaut werden. So bleiben Silikone, die in die Umwelt gelangen, dort lange Zeit erhalten. Auch die gute Witterungsbeständigkeit trägt zu diesem Umstand bei.
  • Silikone lassen sich nur schwerlich in Flüssigkeiten lösen: Sie sind weder wasser- noch fettliebend. Das heisst, sie lösen sich weder in Wasser noch in unpolaren organischen Lösungsmitteln wie Benzin wirklich gut. So lassen sie sich ohne besondere Hilfsmittel (Tenside mit auf sie abgestimmter Superwaschkraft) kaum abwaschen oder mit anderen Stoffen mischen und reichern sich dementsprechend leicht an.

Erscheinungsformen und Verwendung der Silikone

Silikonöle

Silikonöle bestehen in der Regel aus Ketten von Poly(dimethyl)siloxan, dem einfachsten Vertreter der Silikone. Sie sind bei Temperaturen von -60 / -35°C bis 250°C flüssig. Zum Vergleich: Wasser erstarrt bei 0°C und verdampft bei 100°C, Pflanzenöle verdampfen oft schon zwischen 100 und 150°C, wenn sie sich nicht zuvor zersetzen, und werden oft noch über dem Gefrierpunkt von Wasser zunehmend fest. Nicht so Silikonöle: Die sind immer gleich flüssig, ob bei Frost oder auf über 200°C erhitzt. Dazu kommen eine niedrige Oberflächenspannung und gute Durchlässigkeit für Gase.

Anwendungen für Silikonöle

  • Wärmeüberträger (Heizbad im Labor)
  • Gleit- und Schmiermittel
  • Hydraulikflüssigkeit, z.B. im frostkalten Sibirien
  • Antihaftbeschichtungen (Sektkorken, Aufkleberuntergrund, Garne,…)
  • Füllstoff für Implantate
  • Bestandteil von Kosmetik und Pflegeprodukten wie Haar-Conditionern

Silikone in Pflegeprodukten? Sind die nicht furchtbar böse?

In letzterem Bereich, Kosmetik und Haarpflegeprodukte, sind Silikone in den Medien sehr umstritten. Das rührt letztlich von ihrer Funktionsweise her. In Pflegeprodukten werden die unlöslichen Silikone durch aufwändige und genau abgestimmte ‚Formulierungen‘ mit den anderen Bestandteilen mischbar gemacht. So können wir sie z.B. mit einer Pflegespülung in die Haare einmassieren.

Beim Auswaschen mit Wasser geht diese Feinabstimmung allerdings verloren. Die Silikone verlassen folglich das Gemisch (Chemiker sagen „sie fallen aus“) und bleiben auf den Oberflächen, die sie gerade antreffen: Unseren Haaren. Und genau das ist ihr Sinn und Zweck: Die glatte, andere Stoffe abweisende Silikonschicht lässt die Haare glatt und glänzend wirkend. Da Silikone aber schlecht löslich sind, besteht die Gefahr, dass sie sich in immer dickeren Schichten ansammeln (Haarpflege-Experten nennen das „Build-up“). Den Haaren schadet das nicht direkt, aber sie werden dadurch immer dicker und schwerer.

Gleiches gilt auch für die Hautoberfläche: Ein sich dort bildender Silikonfilm kann allerdings auch den Stoffaustausch über die Haut und ihre Poren beeinträchtigen. So kann er die Entstehung bzw. Verschlimmerung von Hautunreinheiten fördern. Überdies gelangen ab- und ausgewaschene Silikonöle mit dem Abwasser in die Klärwerke, wo sie mangels Abbaubarkeit im unlöslichen Klärschlamm landen.

„Böse“ ist sehr relativ

ABER: Bei all dem sind Silikone nicht giftig. Anders als viele andere Stoffe stellen sie somit keine direkte Gefahr für uns und die Lebewesen in unserer Umwelt dar. Überdies sind sie laut meiner Kollegin Mai die am besten wirkenden Haar-Conditioner, die wir kennen. Hier ist das spannende Mailab-Video, in dem es auch um Silikone geht:

Deshalb haben sich die Hersteller von Haarpflegemitteln auch darum gekümmert, uns das Abwaschen von Silikonölen leichter zu machen.  Mit Hilfe von passenden Tensiden können Silikone nämlich durchaus mit Wasser gemischt werden (wenn auch nicht wirklich gelöst: „wasserlösliche Silikone“ sind Werbesprech für ebendiese Kombination von Silikonen mit „ihrem“ Tensid!). Es macht also durchaus Sinn, Conditioner (mit dem Silikonöl) und Shampoo (mit dem passenden Tensid) der gleichen Produktreihe zu verwenden, sodass etwaige Silikonreste von der letzten Behandlung vor dem Eintreffen der nächsten Ladung beseitigt werden können.

Polyquaternium: (K)Eine Alternative

Eine verbreitete Alternative zu Silikonen in Kosmetik sind Polyquaterniumverbindungen. Das sind Polymere, die z.B. Zellulose ähneln, aber zusätzlich Stickstoffatome mit vier Bindungen enthalten. Da Stickstoffatome aber auf nur drei Bindungen ausgelegt sind, sind solche „quartären Amine“ positiv geladen. Die funktionieren als Conditioner nicht ganz so gut wie Silikone, machen aber die gleichen Schwierigkeiten.

Zudem können Polyquaterniumverbindungen (wie z.B. Polyquaternium-7) Pigmentpartikel binden und so zu hartnäckigen Flecken auf Textilien (Handtüchern!), mit denen sie in Berührung kommen, führen. Und das lässt sich, nachdem sich die Verbindungen beim Duschen auf Haut und Haaren abgelagert haben, beim Abtrocknen kaum vermeiden.

Dahingegen ist die Angst vor Verunreingigungen von Polyquaternium-Verbindungen mit Acrylamid, unbegründet: Heute weiss man, dass wir mit der Nahrung wesentlich mehr (und immer noch zu wenig, um uns zu schaden) davon aufnehmen, als dass Spuren in Pflegeprodukten eine Rolle spielen würden.

Verwenden oder nicht?

Wie oft ist eine pauschale Aussage dazu schwierig, da Menschen so verschieden sind. Ich halte es da mit Mai: Sie hat lange, asiatisch-dicke Haare, bei denen ein Conditioner viel bewirken kann. Deshalb zieht Mai die wirksamen Silikone den Alternativen vor. Um eine Belagerung der Kopfhaut zu vermeiden, trägt sie den Conditioner allerdings nicht auf die Kopfhaut, sondern nur auf die unteren Enden der Haarsträhnen auf.

Menschen wie ich mit feinen Haaren, die zum Fetten neigen, haben allerdings weniger von der Wirkung eines Conditioners und mehr von seinen unerwünschten Eigenheiten. Deshalb benutze ich in der Regel auch keinen. Nichts desto trotz hat ein professioneller Conditioner vom Coiffeur (Friseur) mit Silikonöl (den habe ich für „Notfälle“) auch bei mir neulich Wunder in Sachen Kämmbarkeit gewirkt, nachdem sich meine Mähne nach einem Ausflug vollkommen verzottelt hatte.

Auch meine Sonnencreme enthält übrigens Silikonöl – das würde erklären, warum ich das Gefühl habe, dass der Wärmeaustausch über die beschmierte Haut beeinträchtigt ist. Aber ich vertrage das Produkt sonst sehr gut und sein Nutzen ist unumstritten, sodass ich es weiter verwenden werde.

Wer allerdings zu Hautunreinheiten neigt, sollte von Silikonen (und Polyquaternium) auf der Haut besonders Abstand nehmen.

Woran ihr Silikone in Produkten erkennt

Auf der Verpackung jedes Kosmetik- und Pflegeprodukts findet ihr eine Liste mit seinen Inhaltsstoffen gemäss der Internationalen Nomenklatur für Kosmetik-Inhaltsstoffe (INCI). Auch wenn diese Bandwurmnamen Nicht-Chemikern oft kryptisch erscheinen, sind Silikone doch leicht zu erkennen, da sie auf -cone oder -xane enden. Ein verbreitetes Beispiel ist Dimethicone – eine INCI-Bezeichnung für Poly(dimethyl)siloxan.

Polyquaternium-Verbindungen erscheinen in der Liste übrigens als „Polyquaternium“ in Verbindung mit einer Zahl, z.B. „Polyquaternium-7“.

Silikonkautschuk

Flexible Backform aus Silikonkautschuk im Vergleich mit klassischer Backform aus Metall
Links: Flexible Kuchenform aus Silikonkautschuk: Dieser Kunststoff hält locker eine Stunde im Backofen aus! (EvaK / CC BY-SA)

Silikonkautschuk hat mit echtem Kautschuk, einem Naturprodukt, nichts gemein ausser der gummiartigen Konsistenz. Die bewahrt Silikonkautschuk dafür in dem grossen Temperaturbereich von -75 bis 250°C. Und das ganz ohne Weichmacher! Diese Konsistenz, die ihn zu einem praktischen Ersatz für echten Kautschuk macht, hat dem Silikonkautschuk seinen Namen gegeben. Er besteht aus miteinander vernetzten Silikonketten. Die sind allerdings auch unvernetzt als Paste oder Gussmasse lagerbar, sodass die Vernetzung zum „Gummi“ an der Luft binnen Stunden oder Minuten herbeigeführt werden kann. Zudem ist Silikonkautschuk nicht nur wie alle Silikone sehr reaktionsträge, sondern man kann – anders als bei Naturprodukten – leicht nachvollziehen, was genau darin ist.

Silikonkautschuk...aber was ist das?
Was ist das wohl? (Tatsuo Yamashita / CC BY)

Anwendungen für Silikonkautschuk

  • Elastische Back- und Eiswürfelformen
  • Nuggis (Schnuller) und Sauger für Babyflaschen
  • Dichtungsmasse für Fugen (zum Aushärten an der Luft)
  • Implantate
  • Technische Bauteile, Kabelummantelungen, elektrisches Isoliermaterial
Faltbarer Becher aus Silikonkautschuk
Ein faltbarer Becher aus Silikonkautschuk! Platzsparend für die Handtasche… Den Symbolen auf der Packung nach nehmen Japaner mit dessen Hilfe wohl ihre Tabletten. (Tatsuo Yamashita / CC BY)

Silikonharze

Noch stärker vernetzt als im Silikonkautschuk sind die Ketten in Silikonharzen. Dementsprechend sind diese Stoffe hart oder thermoplastisch (d.h.. nur bei höheren Temperaturen formbar). Sie können in flüssiger bzw. plastischer, also wenig vernetzter Form vertrieben und nach dem Auftragen durch Hitzeeinwirkung zum Aushärten gebracht werden. Die gehärteten Silikonharze sind dann sehr beständig gegenüber Wettereinflüssen.

Strukturformel für ein Silikonharz
Dicht vernetzt: Struktur eines Silikonharzes

Anwendungen für Silikonharze

  • Temperatur- und witterungsbeständige Lacke und Beschichtungen
  • Gebäude-Schutzüberzüge (wasserabweisend)
  • Isolierlacke
  • Giessharz für Isoliermaterial

Zusammenfassung

Silikone sind reine Kunstprodukte, die einzigartige Vorteile für viele Anwendungen bieten. Vor allem in Bereichen, in welchen sie mit dem Körper in Kontakt kommen oder hohe Temperaturen herrschen, denen andere Kunststoffe nicht standhalten, sind sie sehr beliebt. Nachteilig ist die schwierige Abbaubarkeit in der Umwelt – die aber dadurch relativiert wird, dass Silikone für Organismen nicht giftig sind!

Wie rund um alle Kunststoffe wird auch zu Silikonen laufend geforscht und Materialien weiterentwickelt, sodass von früher bekannte Nachteile heute immer weniger von Bedeutung sind. So ordne ich die Silikone heute mehr denn je als „sauberste“, also ungiftigste und risikoärmste Vertreter der grossen Familie die Kunststoffe ein.

Und wie steht ihr zu Silikonen? Achtet ihr darauf, wo ihr ihnen begegnet? Verwendet ihr gezielt silikonfreie Pflegeprodukte? Wenn ja, zu welchen Alternativen greift ihr? Oder seht ihr den Silikonen ähnlich gelassen entgegen wie Mai und ich?

Kunststoff - Recycling : So funktionierts

Ruhrpott, Deutschland, 2006: Reto, ein waschechter Schweizer und mein damals neuer Liebster, ist zu Besuch an meinem Studienort. Was mir traurig, wenn auch alltäglich erscheint, schockiert ihn zutiefst: Den überall herumliegenden Abfall ist er aus der Schweiz nicht gewohnt – zumindest nicht in solchen Mengen. Besonders Kunststoff-Verpackungen fallen uns vielerorts ins Auge. Dabei gibt es schon seit meiner Kindheit die „gelbe Tonne“ und dahinter ein ausgefeiltes Recycling-System. Ganz zu schweigen von all den Abfalleimern im öffentlichen Raum.

Wenige Jahre später habe ich die Seiten gewechselt und musste Reto bald recht geben: Was die Abfall-Entsorgung betrifft, sind die Schweizer generell ordentlicher als meine Landsleute. Nach 10 Jahren unter den Eidgenossen wird allerdings deutlich: Auch hier wird Littering zunehmend zum Problem.

Da braucht es gar keine Horrorbilder und -meldungen von verschmutzten Stränden und Plastik in Tiermägen und dem Marianengraben, um zu begreifen, dass wir ein Problem haben.

Recycling – das Thema ist ein Dauerbrenner

Eigentlich haben wir gleich zwei Probleme:

  1. Klassische Kunststoffe sind Erdölprodukte. Sie werden also aus einem fossilen Rohstoff hergestellt, der irgendwann zur Neige geht.
  2. Klassische Kunststoffe werden kaum bis gar nicht biologisch oder von den Naturkräften abgebaut.

Beide sind nichts neues, sondern uns seit Jahrzehnten bewusst. Deshalb tüfteln Forscher und Ingenieure ebenso lang schon an Methoden, „verbrauchtes“ Plastik wieder zu verwerten. Sie entwickeln Verfahren und bauen Recycling-Kreisläufe immer weiter aus. Die Schweizer bezeichnen sich gar als Weltmeister im Recycling von Abfällen – auch von Kunststoffen.

Aber welche Kunststoffe können wirklich recycelt werden? Wie funktioniert das? Wie könnt ihr zum nachhaltigen Umgang mit Plastik beitragen?

Welche Kunststoffe sind recycelbar?

Am einfachsten wiederverwendbar sind möglichst reine Stoffe. Ein Material, das aus nur einem Stoff besteht, hat nämlich durchgehend die gleichen Eigenschaften und kann mit einem einzigen, daran angepassten Verfahren behandelt werden. Das gilt auch für Verbundmaterialien, deren einzelne Bestandteile sich leicht voneinander trennen lassen.

Nicht trennbare Verbundmaterialien und Kunststoffe, die mit vielen Zusatzstoffen, sogenannten Additiven (z.B. für Farbeffekte, Weichmacher, Brandschutz,…), vermischt sind, lassen sich nur schlecht oder gar nicht wiederverwenden.

Thermoplaste als Recycling-Favoriten

Besonders für eine Wiederverwertung geeignet sind jene Kunststoffe, die bei hohen Temperaturen weich und formbar werden – die sogenannten Thermoplaste. Die kann man nämlich schreddern, erhitzen und zu neuen Gegenständen formen, ohne dass sich ihre Moleküle dabei verändern (zumindest im Optimalfall).

Zu den Thermoplasten gehören auch die verbreitetsten Alltagskunststoffe Polyethylenterephthalat (PET), Polyethylen (PE) und Polypropylen (PP) (Einzelheiten zu diesen Stoffen erfahrt ihr im Plastik-1×1 hier in Keinsteins Kiste). Da verwundert es nicht, dass gerade diese Kandidaten die grösste Rolle beim Recycling von Alltagsabfällen spielen. Allerdings gelingt auch das nur dann wirklich gut, wenn die Hersteller schon bei der Erstverarbeitung dieser Kunststoffe auf die Recyclingfähigkeit achten. Wie das geht, verraten Guidelines für die Industrie, verfasst von den Recycling-Verantwortlichen.

Auch Polyvinylchlorid (PVC) ist ein Thermoplast. Bei diesem Kunststoff gestaltet sich das Recycling (wie auch die Verwendung im Lebensmittelbereich) schon kniffeliger, weil er in vielfältiger Form verwendet wird und (besonders als Weich-PVC) kaum ohne Additive auskommt. Trotzdem wird auch PVC recycelt, wenn auch vornehmlich im Bauwesen, wo grössere Mengen gleichartigen PVC-Materials anfallen.

Und was ist mit kompostierbaren Biokunststoffen?

Was nach der ultimativen Verwertbarkeit bzw. Entsorgung klingt, hat oft einen beachtlichen Haken. Biopolymere sind aus Kettengliedern zusammengesetzt, die Lebewesen entlehnt sind, wie die Milchsäure-Glieder des Polylactids (PLA). Damit sind sie grundsätzlich für den Abbau durch Lebewesen oder deren Bestandteile geeignet.

In der Praxis sind dafür aber oft Bedingungen nötig, die ein Komposthaufen oder die freie Natur nicht bieten. PLA ist beispielsweise nur in speziellen Anlagen bei unnatürlichen Temperaturen abbaubar. So macht PLA zur Abfallvermeidung bislang nur dann Sinn, wenn der Anbieter – zum Beispiel ein Park mit Imbissbetrieb – direkt mit einem PLA-Entsorger (und bestenfalls -Wiederverwerter) zusammenarbeitet.

Wie wird recycelt?

Kunststoffe kann man grundsätzlich auf zwei Arten wiederverwerten:

  1. Werkstoffliche Verwertung: Das Material (die Polymer-Ketten als solche bleiben (weitestgehend) intakt und werden nur zu neuen Gegenständen geformt. Das ist der wohl wünschenswerteste Weg, da so der grösste Teil des zur Herstellung des Kunststoffs getätigten Aufwands nicht noch einmal nötig ist. Für diesen Weg geeignet sind im Besonderen die Thermoplasten unter den Kunststoffen. In der Praxis sind solche Verfahren leider meist nicht unendlich wiederholbar: Die Polymere überstehen das Erhitzen oft nicht gänzlich unbeschadet, sodass das Recycling-Material oft eine weniger gute Qualität als der Kunststoff bei der Erstverwendung hat. Fachleute nennen diesen Effekt deshalb „Downcycling“.
  2. Rohstoffliche Verwertung: Die Polymerketten werden dabei gezielt zerlegt. Die entstehenden Kleinmoleküle sind nach wie vor wichtige Energieträger und können als Brennstoffe oder Rohmaterial für andere Erdölprodukte verwendet werden.

So werden einzelne Kunststoffe recycelt

PET (Polyethylenterephthalat)

In der Schweiz gibt einen einzigartigen, geschlossenen PET-Recycling-Kreislauf: Überall in der Öffentlichkeit findet man hier blau-gelbe Sammelbehälter für PET-Getränkeflaschen – in Geschäften, an Bahnhöfen, bei Veranstaltungen, in Parkanlagen, an Abfall-Sammelstellen und anderswo. Die darin gesammelten Flaschen können farblich sortiert und nach Abtrennung von Fremdstoffen zu Pressballen verarbeitet werden, die rund 98% reines PET ihrer jeweiligen Farbe enthalten. Infrarot-Technik und Laser machen es möglich.

Diese PET-Abfälle werden weiter gereinigt, zu Flocken geschreddert und von den Flaschendeckeln getrennt. Letztere bestehen nämlich aus PE, welches – anders als PET – weniger dicht als Wasser ist und folglich darauf schwimmt. Die PET-Flocken sinken derweil auf den Grund (Chemiker und Physiker nennen dieses Trennverfahren Sedimentation), sodassman die PE-Deckel einfach abgiessen oder abschöpfen kann.

Nach weiterer Reinigung sind die Flocken schliesslich so sauber, dass sie als Lebensmittel-Verpackungsmaterial zulässig sind. Dann werden sie eingeschmolzen und zu sogenanntem Re-Granulat, einem groben Kunststoff-Gries, verarbeitet. Als Thermoplast kann dieser PET-Gries schliesslich bei 250°C zu neuen Gegenständen zusammengesinter werden – zum Beispiel zu dickwandigen „PET-Rohlingen“, die, bereits mit Gewinde und Deckel versehen, eine Flasche erahnen lassen.

PET-Rohling: Nach Erst-Herstellung oder Recycling kann PET in dieser Form platzsparend zum Getränkehersteller transportiert werden.
Pet-Rohling oder „Petling“ mit Deckel: Daraus wird einmal eine Flasche.

In dieser platzsparenden Form werden die Rohlinge oder „Preforms“ an die Getränkeabfüller (oder auch an Geocaching-Begeisterte, die darin ihre Schätze verstecken) geliefert. In der Abfüll-Anlage werden die Rohlinge erneut erhitzt und zu fertigen Getränkeflaschen aufgeblasen.

So effektiv geht PET-Recycling

Der Betreiber des PET-Kreislaufs – im Übrigen ein Verein, also nicht-staatlich und nicht gewinnorientiert – behauptet, bei der Wiederverwertung von PET-Getränkeflaschen finde kein Downcycling statt. Zudem betrage die Recyclingquote für PET in der Schweiz mittlerweile 82%! Bei freiwilliger Beteiligung der Getränkehersteller und Abfallsammler wohlgemerkt. Das hält die Regierung, die ein Minimum von 75% zum Ziel erklärt hat, bis dato davon ab, ein Pfandsystem einzuführen.

Polyethylen und Polypropylen (PE bzw. PP)

Auch PE und PP sind Thermoplaste. So kann man sie in ähnlicher Weise wie PET-Flaschen verwerten. Allerdings erweichen sie bei wesentlich niedrigeren Temperaturen (PE schon ab 80°C, PP bleibt noch etwas weiter fest) und würden sich bei 250°C längst zersetzen. Deshalb sind für das Recycling von PE und PP jeweils eigene Kreisläufe und Anlagen nötig, um diese Kunststoffe gemäss ihren Eigenschaften zu behandeln.

Ausserdem kommen nur dafür geschaffene PE- und PP-Produkte für die Wiederverwertung in Frage. Und selbst dann geht das Einschmelzen in der Regel mit einem Downcycling einher. So kann beim Recycling von PE oder PP meist kein Material mit Lebensmittelqualität gewonnen werden. R-PE und R-PP kommen daher vornehmlich im Bauwesen, in Nicht-Lebensmittelverpackungen, der Landwirtschaft, in Fahrzeugen oder Elektronik zum Einsatz.

EPS/Styropor = „Quietschpapier“

Diese Form von Polystyrol (EPS steht für „Expandiertes Polystyrol“) birgt ein ganz besonderes Problem: Das Material, das wir als massgeschneiderte, stosssichere Verpackung oder Wärmedämmstoff kennen, besteht zu 98% aus eingeschlossener Luft und nur zu 2% aus dem eigentlichen Kunststoff und seinen Additiven. Das Ganze ist also ein enormer Platzfresser!

Der Transport zu einer Mühle, in der Styropor zermahlen und anschliessend zu Re-Granulat eingeschmolzen werden kann, braucht daher ein enormes Volumen für reichlich wenig Kunststoff-Masse. Trotzdem wird das gemacht und das Granulat kommt vornehmlich für Einsätze im Bauwesen zur Verwendung.

Um dem Transportproblem zu begegnen, hat das Fraunhofer-Institut für Verfahrenstechnik und Verpackung IVV ein neues Recycling-Verfahren für EPS entwickelt (und CreaSolv® getauft). Die Abfälle sollen dabei noch an der Sammelstelle in ein Lösungsmittel, das möglichst nur Polystyrol auflöst, eingebracht werden. Dabei entweicht die ganze Luft und Beistoffe können später leicht abgetrennt werden. In der Lösung nimmt die Kunststoffmasse nur 1/50 des Raumes ein, den das ursprüngliche EPS bräuchte, was den Transport erheblich erleichtert.

Getränkekartons

Das ist auch mir neu: In der Schweiz können auch Getränkekartons („Tetrapak“) recycelt werden. Tatsächlich tragen solche, die man in den grossen Supermärkten bekommt, das Kennzeichen „für den Restmüll“. Erst bei der Recherche für diesen Artikel bin ich bei Swiss-Recycling zufällig auf den – einmal mehr privaten – Anbieter für die Wiederverwertung von Getränkekartons gestossen. Bislang gibt es nur 100 Sammelstellen, aber die nächste ist nur wenige Dörfer weiter. Da führe ich die Tetrapak-Trennung doch gleich bei uns im Haushalt ein. Anbei: Ja, es stimmt: Abfalltrennung ist hier in der Schweiz eine besondere Spezialität.

Warum ist das Tetrapak-Recycling nicht weiter verbreitet?

Getränkekartons sind ein typisches Verbundmaterial: Pappe, Kunststoff- und Aluminiumschichten sind darin fest miteinander verklebt. Das schützt den Inhalt und ist für feuchtfröhliche Experimente nützlich, aber ganz kniffelig zu recyceln.

Immerhin können die Pappfasern aus den alten Kartons herausgelöst und zu Wellpappe verarbeitet werden. Kunststoff und Aluminium werden dann als Brennstoff für die Erzeugung von Fernwärme oder Strom eingesetzt – wie übrigens auch der Restmüll oder -kehricht hierzulande.

So könnt ihr zum Recycling beitragen

In Deutschland und Österreich werden wiederverwertbare Kunststoffe gemischt gesammelt. Verpackungen, die als rezyklierbar gelten, tragen als Kennzeichen den „grünen Punkt“. Ihr könnt sie – möglichst sauber – in die gelbe Tonne bzw. den gelben Sack entsorgen, deren Inhalt die Müllabfuhr regelmässig abholt.

In der Schweiz ist, wie bereits erwähnt, viel Eigeninitiative gefragt. PET-Getränkeflaschen könnt ihr in die blau-gelben-Behälter an öffentlichen Sammelstellen werfen, um sie in den PET-Kreislauf zurückfliessen zu lassen. PE- und PP-Flaschen werden häufig von den Supermärkten zurückgenommen (haltet die Augen nach der Entsorgungswand innerhalb des Marktes offen!). Wenn ihr eine der Sammelstellen für Getränkekartons in eurer Nähe habt, könnt ihr eure Tetrapaks auch dorthin bringen. Und neu führt auch die Migros – eine der beiden grössten Supermarktketten – eine Gemischtsammlung für rezyklierbare Kunststoffe ein.

Was bringt euch der ganze Aufwand? Nicht nur ein reines Gewissen: Was immer ihr an diesen für euch kostenfreien Sammelstellen entsorgt, landet nicht im Hauskehricht (Restmüll), für den hierzulande deftige Gebühren pro Abfallsack zu entrichten sind. Bedingung für ein effektives Recycling ist allerdings, dass nur die gewünschten Abfälle in den jeweiligen Sammelstellen landen!

Warum gibt es keine zentrale Gemischtsammlung in der Schweiz?

Das Recycling aus einer Gemischtsammlung liefere eine verminderte Ausbeute und Qualität, sagen die Recyclingverantwortlichen in der Schweiz. Laut einem Beitrag des Verbrauchermagazins „Kassensturz“ beim Schweizer Fernsehen (Moderation und Interviews in Mundart, Kommentar in Hochdeutsch) liege die Ausbeute oft unterhalb dessen, was private Anbieter einer Gemischtsammlung behaupten. Ausserdem ist die nachträgliche Sortiererei teuer. So teuer, dass das Geld sinnvoller für die Umwelt eingesetzt werden könne. Viele private Anbieter von Gemischtsammlungen in der Schweiz verkaufen deshalb die gesammelten Abfälle in die Nachbarländer – und können dann nicht mehr kontrollieren, was damit geschieht.

Das Paretoprinzip und die Müllvermeidung

Das lässt mich persönlich an das Paretoprinzip denken: Wenn 100% aller Bemühungen 100% der Ergebnisse bringen, seien demnach nur 20% der Bemühungen nötig, um 80% der Ergebnisse zu erzielen (und umgekehrt brächten die übrigen 80% der Bemühungen nur 20% der Ergebnisse. Ob die Zahlenverhältnisse genau so überall anwendbar sind, sei dahingestellt. Kern der Sache ist in meinen Augen, dass Perfektionismus unglaubliche Ressourcen verschlingen und dabei vergleichsweise wenig bringen kann.

Das ist besonders dann spannend, wenn man mit begrenzten Ressourcen zurechtkommen muss. Wie auch im Umweltschutz: Wie in vielen Bereichen ist die begrenzteste Ressource hier wohl das Geld. Und das mag an anderer Stelle (sei es zum Ausbau funktionierender Kreisläufe, zur Förderung der Verwendung rezyklierbarer oder zur Entwicklung völlig neuer Materialien) effektiver eingesetzt werden können, als zum Aussondern weniger wiederverwertbarer Stoffe aus einem grossen Rest, der am Ende in der Müllverbrennungsanlage landet.

Der Kassensturz-Beitrag kommt für den Kunststoffsammelsack der Migros (bislang nur im Raum Luzern erhältlich) noch zum besten Testergebnis: Der „orange Riese“ sammelt nur ausgewählte Kunststoffe und lässt tatsächlich recyceln – noch dazu in einer Anlage in der Schweiz. Ich bin gespannt, ob das auch funktioniert, wenn die Sammlung bis zum Frühling 2021 auf das ganze Land ausgeweitet wird.

Grundsätzlich gilt: Je ausgewähltere und sauberere Abfälle ein Anbieter sammelt, desto besser ist die zu erwartende Ausbeute. Wenn ihr Säcke für die Sammlung gemischter Kunststoffe verwendet, beachtet daher unbedingt die Gebrauchsanweisung!

Wirklich effektiv gegen Plastikmüll geht so

Hier folge ich meinem persönlichen Paretoprinzip: Mit überschaubarem Aufwand möglichst viel erreichen! Klar sollte man nach Möglichkeit keinen Abfall produzieren. Aber nicht jeder hat einen Unverpackt-Laden in seiner Nähe, und eine weite Anfahrt kostet nicht nur Zeit und Geld, sondern auch Kraftstoff in irgendeiner Form, der wieder zu Lasten der Umwelt geht.

Sehr einfach sind aber folgende Massnahmen:

  • Verwendet Mehrweg-Einkaufssäcke /- behälter – nicht nur im Supermarkt, sondern auch im Kaufhaus und anderen Geschäften
  • Nutzt die Mehrweg-Gemüse-Netzbeutel, die hier in der Schweiz in beiden Grossverteiler-Ketten angeboten werden (gibt es die in D und Ö auch? Falls nicht, sind die ein tolles Andenken an euren nächsten Schweiz-Urlaub 😉 )
  • Achtet, wenn ihr Produkte in Kunststoff-Verpackungen, insbesondere Flaschen, kauft, auf ein rezyklierbares Design. Das könnt ihr an folgenden Eigenschaften (gemäss den Richtlinien für Verpackungs-Hersteller) erkennen:
    • Das Material: Das Recyclings-Symbol mit der Ziffer im Pfeil-Dreieck, oft auf dem Flaschenboden, verrät es euch: PE (Ziffer 02 bzw. 04), PP (Ziffer 05) oder PET (Ziffer 01) sind leicht wiederverwertbar.
    • Die Farbe: PE und PP sind von Natur aus matt weiss und undurchsichtig. PET ist dagegen von Natur aus durchsichtig. Oberflächeneffekte wie Fluoreszenz („grelle“ Farben!) oder „metallic“-Schimmer entstehen durch Zusatzstoffe und verhindern die Wiederverwertung!
    • Etiketten: Sollten nicht mehr als 80% (vier Fünftel) der Flaschenoberfläche bedecken.
  • Vermeidet Produkte, die übermässig verpackt sind. Ein Klassiker ist unnötig vorgeschnittenes Obst: Die meisten Früchte sind von Natur aus mit einer Schale ausgestattet, die besten Schutz vor äusseren Einflüssen bietet. Die braucht ihr nur selber aufzuschneiden.
  • Kauft Getränke in Mehrweg- oder PET-Flaschen (letztere insbesondere, wenn ihr in der Schweiz seid) und entsorgt sie wie vom Anbieter vorgesehen.
  • Achtet beim Kauf von Kunststoff-Gegenständen auf gute Qualität und nutzt sie lange bzw. „vererbt“ sie weiter, wenn ihr sie nicht mehr braucht.
  • Versucht euch im Upcycling: Viele gebrauchte Kunststoff-Verpackungen und -gegenstände könnt ihr auf neue Art verwenden oder geben prima Bastelmaterial ab – oder Rohstoffe zum Experimentieren!

Was haltet ihr von den Recycling-Bestrebungen in eurem Land? Habt ihr noch mehr Ideen zur Vermeidung von Kunststoff-Abfällen? Wie geht ihr mit euren Abfällen um?

Desinfektionsmittel - Was ist wirklich sinnvoll?

Der (oder das, beides ist richtig) neue Corona-Virus aus China alias COVID-19 bzw. SARS-CoV-2 ist in aller Munde – und Desinfektionsmittel erfreuen sich gerade grösster Beliebtheit. Selbst in unserem Dorfsupermarkt sind sie praktisch ausverkauft. Einige Medien veröffentlichen sogar Anleitungen für DIY-Hände-Desinfektionsmittel. „Das wäre doch ein Thema für Keinsteins Kiste“, meint mein Partner, als er ein solches Rezept liest.

Normalerweise bin ich ja für Alltags-Chemie zum Selbermachen sofort zu haben. Aber macht die Verwendung von Desinfektionsmitteln im Alltag überhaupt Sinn? Können wir uns damit vor Infektionen schützen? Oder hebeln die Nebenwirkungen solcher Mittel den Nutzen vollkommen aus?

Gleich vorweg: Die Antwort auf die letzte Frage lautet in der Regel „ja“. Deshalb bringe ich das erwähnte Rezept auch nicht als Experiment. Denn das Hamstern von Desinfektionsmitteln oder deren Bestandteilen ist für die meisten von uns nicht sinnvoll, sondern bereitet nur jenen, die wirklich darauf angewiesen sind, Schwierigkeiten bei der Beschaffung.

Stattdessen zeige ich euch, wie Desinfektionsmittel funktionieren und warum sie im Alltag meist mehr Probleme als Nutzen bringen. Und für Interessierte bzw. darauf Angewiesene verlinke ich im Verlauf das Original der verbreiteten Rezeptur.

Wie funktionieren Desinfektionsmittel?

Unsere Haut und unsere Umgebung sind von Myriaden Kleinstlebewesen besiedelt. Durch Berührung können sie von einer (Haut-)Oberfläche zur nächsten übertragen werden. Und einige dieser Mikroben können uns krank machen – besonders dann, wenn sie einen Weg durch offene Wunden finden oder/und unser Immunsystem nicht so funktioniert wie es soll.

Beides – Wunden und schlecht funktionierende Immunsysteme – findet man in Krankenhäusern, Arztpraxen und anderen Pflegeeinrichtungen besonders häufig. Deshalb gehört es zum Arbeitsalltag von Ärzten und Pflegern, sich immer wieder die Hände mit einem Desinfektionsmittel einzureiben. So wird die Gefahr minimiert, dass sie womöglich gefährliche Erreger von einem Patienten zum nächsten tragen.

Was ein Desinfektionsmittel können muss

Um das zu leisten muss ein Desinfektionsmittel verschiedene Gruppen von Erregern an den Händen (und medizinischen Geräten etc.) innerhalb kürzester Zeit unschädlich machen:

  • Bakterien
  • Pilze
  • Sporen der ersten beiden
  • Viren

Mit anderen Worten: Ein Desinfektionsmittel muss diese Mikroorganismen effektiv vergiften können. So kommen naturgemäss nur giftige Stoffe als Desinfektionsmittel in Frage.

Zum Glück haben wir Menschen diesen Mikroben einiges voraus:

  1. Wir sind Vielzeller (ein Mensch besteht aus rund   Zellen), während Bakterien und Pilze wie jene der Gattung „Candida“ Einzeller sind. Wenn uns ein paar Hautzellen verloren gehen, schadet uns das nicht sofort. Schliesslich hat unser Vielzeller-Körper Mittel, um solche Zellen zu ersetzen. Eine Bakterien- oder Einzeller-Pilzzelle, die tödlich beschädigt wird, bedeutet dagegen sofort ein totes Lebewesen.
  1. Unsere Zellen haben einen Zellkern, in dem unsere DNA weitgehend sicher verwahrt ist. Bakterienzellen haben dagegen keinen Zellkern. Das bedeutet auch, sie funktionieren anders als unsere Zellen. Sie sind somit gegenüber anderen (bzw. mehr) Dingen empfindlich als unsere Zellen (und die der Pilze!) mit Kern.

So ist es nicht schwer, Stoffe zu finden, die Einzellern den Garaus machen, für unsere eigenen Zellen aber nicht all zu schädlich sind.

Besonders kniffelig: Die „Keinzeller“ unter den Erregern

Viren sind hingegen gar keine Zellen, sondern winzige Erbgut-Pakete, die Zellen „kapern“ (indem sie sich von den Zellen aufnehmen lassen) und für ihre Vermehrung zweckentfremden können. Die Pakethülle von Viren besteht aus Membranlipiden und Proteinen, was sie lebenden Zellen chemisch ähnlich macht. Vergiften bzw. töten kann man sie dennoch nicht, da sie streng genommen gar nicht leben. „Zerstören“ träfe es da wohl besser. Mit etwas Glück kann ein Stoff, der für Bakterien giftig ist, auch einen Virus zerstören.

Elektronenmikroskop-Aufnahme von Corona-Virionen (ein einzelnes Virus-Partikel wird „Virion“ genannt) aus dem Jahr 1975: Die Stachel-„Krone“ (lat. corona) aus Hüllenproteinen gibt dieser Virus-Familie ihren Namen. Bilder von den aktuellen COVID-19-Erregern findet ihr hier!

Besonders kniffelig ist die Beseitigung von Sporen. Das sind stark gepanzerte Ableger von Bakterien oder Pilzen, aus denen sich neue Zellen entwickeln können. Ein Stoff, der Sporen ausschalten soll, muss durch deren Panzerung dringen (wofür er meist etwas mehr Zeit braucht) und so viel Schaden anrichten, dass eine Spore sich nicht mehr zur neuen Zelle entwickeln kann.

Welche Stoffe können das?

Oxidationsmittel

Die Allrounder unter den keimtötenden (d.h. bioziden) Stoffen sind Oxidationsmittel, insbesondere solche, die einzelne Sauerstoffatome freisetzen können. Solche Oxidationsmittel nehmen nämlich all zu gern anderen Molekülen Elektronen weg (die Moleküle werden damit oxidiert), wodurch sie verschiedenste Reaktionen in Gang setzen. Und diese Reaktionen beschädigen oder zerstören nicht zuletzt die Bestandteile von Lebewesen und ihnen ähnlichen Gebilden: Bakterien, Pilze, Viren und sogar Sporen.

Leider sind Oxidationsmittel nicht wählerisch, wenn es um ihre Reaktionspartner geht. So können sie unsere Körpergewebe ebenso schädigen wie die Mikroorganismen. Deshalb sind besonders starke Oxidationsmittel sowie höhere Konzentrationen für die Anwendung an Haut und Schleimhäuten nicht geeignet. In geringer Konzentration kommen am Körper zum Einsatz:

  • Wasserstoffperoxid (H2O2)
  • Natriumhypochlorit (NaOCl, wie H2O2 im medizinischen Bereich, z.B. beim Zahnarzt)
  • Chloramin T (eine organische Verbindung, die in Wasser Hypochlorit freisetzt)
  • Elementares Iod (in Präparaten zur Wunddesinfektion –> z.B. „Betaisodona“)
  • Benzalkoniumchlorid (

Andere Oxidationsmittel wie Chlordioxid („MMS“!), elementares Chlor, Ozon oder Peressigsäure sind hingegen nur für die Desinfektion von Gegenständen oder Wasser geeignet. In letzterem (z.B. im Schwimmbad) kommen Chlor oder Ozon in kleinsten Mengen mit uns in Kontakt, was wir an brennenden Augen und wunden Stellen leicht bemerken. Die haben es also wirklich in sich!

Aldehyde

Aldehyde oder chemisch korrekt „Alkanale“ sind hochwirksam gegen alle möglichen Bakterien (einschliesslich des besonders widerspenstigen Tuberkulose-Erregers), Pilze, Viren und Sporen. Aber leider auch gegen unsere eigenen Körper: Viele desinfizierende Aldehyde sind sehr giftig, weshalb sie nur zur Desinfektion von Oberflächen, Geräten und Räumen zum Einsatz kommen.

Alkohole

Der „Trinkalkohol“ Ethanol und verschiedene Varianten des Propanols sind bekannte Beispiele für desinfizierende Alkohole. Werden sie mit Wasser gemischt, können sie in (Bakterien)zellen eindringen und dafür sorgen, dass die Proteine darin ihre Form und damit ihre Funktion verlieren. Ein reiner Alkohol würde stattdessen schon die Proteine auf der Zelloberfläche zerstören und dann keinen Weg hinein mehr finden – sodass das Bakterium am Leben bliebe.

Auf der Haut angewendet sind sie für uns ungiftig (eingenommen dafür um so mehr – das weiss jeder, der schonmal einen Kater hatte), töten bzw. zerstören aber Bakterien (einschliesslich der Tuberkulose-Erreger), Pilze und Viren mit Hülle (es gibt auch Viren ohne Hülle, jedoch ist die Hülle ein wichtiges Werkzeug für das Kapern von Zellen, weshalb viele der uns krankmachenden Viren – z.B. Corona- und Influenza-Viren – eine Hülle haben). Den Sporen können Alkohole hingegen nichts anhaben.

Quartäre („Quaternäre“) Ammoniumverbindungen

Zum Beispiel Benzalkoniumchlorid. Diese organischen Moleküle enthalten (wie das Ammoniumion) ein positiv geladenes Stickstoffatom, an welches vier organische (kohlenstoff- und wasserstoffhaltige) Atomgruppen gebunden sind.

Benzalkoniumchlorid - eine quartäre Ammoniumverbindung als Konservierungs- und Desinfektionsmittel
Benzalkoniumchlorid(e): Davon gibt es mehrere Varianten mit unterschiedlich langen Seitenketten.

Diese Moleküle sind Tenside, können also gleichsam mit wasserliebenden und fettliebenden Oberflächen wechselwirken (was Tenside genau sind und was sie können erfahrt ihr hier). Wenn eine der Kohlenwasserstoff-Gruppen 8 bis 18 Kohlenstoffatome enthält, können die betreffenden Moleküle derart mit Zell-Aussenhüllen wechselwirken, dass diese beschädigt werden und die Zellen daran eingehen.

Das gilt leider ebenso für Bakterien wie für unsere eigenen Zellen. Deshalb ist Benzalkoniumchlorid als Konservierungsmittel für Medikamente (insbesondere Augentropfen) wegen seiner Nebenwirkungen umstritten.

Metallisches Silber oder Kupfer

Die Oberflächen dieser Metalle wirken schädlich – um nicht zu sagen tödlich – auf Bakterien, jedoch nicht auf die anderen  Erreger-Kandidaten (Pilze, Viren, Sporen). So sind Silberfäden als Mittel gegen Käsesocken und Kupfertürklinken als Beitrag zur Verminderung der Keim-Verbreitung in Krankenhäusern gefragt, aber längst kein Rundumschutz.

Eine ausführliche Liste mit weiteren desinfizierenden Verbindungsklassen, auch für die Haut-Desinfektion, findet ihr hier im Wikipedia-Artikel zur Desinfektion.

Und was taugt das DIY-Desinfektionsmittel aus den Medien?

Das Rezept, welches die Schweizer Gratis-Zeitung „20 Minuten“ vom österreichischen Portal „heute.at“ übernommen hat, stammt ursprünglich von der WHO. Gedacht ist es allerdings als Empfehlung für Apotheker und medizinsches Personal rund um den Globus, die auch unter einfachen Bedingungen Patienten versorgen müssen. Also ebenso für ein Ebola-Gebiet im Kongo wie für das Behelfsspital in Wuhan – aber auch für die Schweizer Apotheke um die Ecke.

Die Desinfektionslösung gemäss der WHO-Rezeptur besteht aus rund 83% Ethanol („Alkohol“) in destilliertem Wasser, mit einer kleineren Menge Glyzerin und ein wenig Wasserstoffperoxid dabei.

Das eigentliche Desinfektionsmittel darin ist der Alkohol. Wasserstoffperoxid in der geringen Menge dient dagegen mehr als eine Art Konservierungsmittel. Und das Glyzerin – ein verbreiteter Bestandteil von Kosmetikprodukten – soll der Haut die Feuchtigkeit erhalten.

Alle vier Stoffe sind in den allermeisten Ländern recht einfach und preisgünstig zu bekommen. Und sie funktionieren. So soll medizinisches Personal auf der ganzen Welt Zugang zu einfacher aber wirksamer Desinfektionslösung bekommen.

Doch was wirksam ist, hat naturgemäss auch unerwünschte (Aus-)Wirkungen:

Desinfektionsmittel bringen auch Schwierigkeiten durch…

Resistenzen

Insbesondere Bakterien können resistent gegenüber Desinfektionsmitteln werden (ähnlich wie gegenüber Antibiotika), wodurch die Desinfektionsmittel gegen solche Stämme unwirksam werden.

Schädigung der Haut

Ich habe während der Anfertigung meiner Diplomarbeit im Zellkulturlabor ein knappes Jahr lang regelmässig Hände und Arbeitsumgebung desinfizieren müssen (Bakterien und Pilze waren unser bzw. der Zellkulturen grösster Feind). Für die Hände hatten wir ein Desinfektionsmittel aus dem medizinischen Bereich (das blaue „Sterillium“), für die Arbeitsumgebung 70% Ethanol in destilliertem Wasser (das ist billiger als das Sterillium).

Ich habe schnell gelernt, ausserhalb der Arbeitszeit eine Handcreme zu verwenden, weil das ständige Desinfizieren zu trockener, gereizter Haut führte. Und was für mich nach einigen Monaten wieder vorbei war, taten unsere MTAs („Labortechniker“) ein (Arbeits-)Leben lang. Die Folge: Trotz Handcreme hatten sie rissige, dauergereizte Hände, um die ich meine Kolleginnen absolut nicht beneidet habe.

Wie kommt es dazu?

Die meisten Mikroorganismen auf unserer Haut machen nicht nur nicht krank, sondern schützen uns sogar vor schädlichen Keimen. Die finden bei intakter „Hautflora“ nämlich gar keinen Platz, um sich anzusiedeln. Desinfektionsmittel, die gegen Bakterien wirken, sind aber leider nicht wählerisch. Sie töten die erwünschten Hautbakterien ebenso wie die Krankmacher. Und ist die Hautflora einmal dezimiert, finden unerwünschte Gäste um so mehr Platz, um sich einzunisten.

Ausserdem entziehen die in Desinfektionslösungen enthaltenen Stoffe der Haut leicht Feuchtigkeit. Die Handcreme sollte den Folgen dessen entgegen wirken. Zudem enthält die „Sterillium“-Lösung Stoffe, die zur Erhaltung der Hautfeuchtigkeit beitragen sollen.

Gefahren für die Umwelt

Auch in Kläranlagen gibt es zahlreiche Bakterien, die dort wertvolle Reinigungsarbeit leisten, und zu einem „gesunden“ natürlichen Gewässer gehören Bakterien einfach dazu. Wenn nun Desinfektionsmittel – besonders in grösseren Mengen – nicht fachgerecht entsorgt werden (im Sonderabfall!), können sie das Ökosystem in Klärwerken oder natürlichen Gewässern empfindlich schädigen.

Daheim oder in der Medizin – Wo machen Desinfektionsmittel Sinn?

Im medizinschen Bereich

Wo kranke Menschen gepflegt, offene Wunden versorgt und schwache Immunsysteme häufig sind, trägt die Händedesinfektion Grosses zur Verminderung der Übertragung von Keimen bei. Medizinisches Personal reibt sich dazu mindestens vor und nach jedem Patientenkontakt die Hände mit einer alkoholhaltigen Desinfektionslösung für den medizinischen Bereich (z.B. das erwähnte „Sterillium“) ein. Dadurch wird der grösste Teil der Mikroorganismen auf der Haut – einschliesslich der nützlichen Hautflora – ausgeschaltet.

In den Tiefen unserer Haarwurzeln, gut geschützt unter einer Schicht Talg, überleben jedoch einige der wichtigen Hautbewohner (ohne einem Patienten direkt schaden zu können). Die können sich nach dem Verschwinden des Desinfektionsmittels ungehindert teilen und die Hautoberfläche neu besiedeln. Dank dessen und dank feuchtigkeitserhaltender Zusatzstoffe sollte sich der Schaden an den Händen des medizinschen Personals in Grenzen halten.

Und daheim?

Warum sollten wir diesen schützenden Effekt nicht auch in unserem Zuhause haben? Das zumindest denken sich Anbieter für desinfizierende Reiniger und Hand-Desinfektionsmitteln für die Alltagsgebrauch. Eine Stichprobe bei einem bekannten Anbieter (auf dessen Website, denn die Originale sind ja ausverkauft…) zeigt: Diese Alltags-Desinfektionsmittel sind anders zusammengesetzt als jene für den medizinischen Bereich, enthalten mitunter nur Alkohole und Wasser.

Und damit sind wir wieder bei den MTAs im Zellkulturlabor: Die hatten nämlich nicht nur die medizinische Desinfektionslösung, sondern, beim Auswischen der sterilen Werkbänke und Desinfektion von Instrumenten, auch das simple Gemisch von Ethanol und Wasser ständig an den Händen. Und das enthielt eben – wie so manches Alltags-Desinfektionsmittel – keine hautschützenden Zusätze. Dieser Umstand hat gewiss nicht zur Hautgesundheit – insbesondere bei langfristiger Anwendung – beigetragen.

Also nutzen wir doch lieber die Desinfektionslösungen für den medizinischen Bereich?

Die sollen ja – in Kombination mit einer guten Handcreme – für unsere Haut auch bei regelmässigem Gebrauch erträglich sein. Aber brauchen wir so viel Desinfektion überhaupt?

Warum wir Desinfektionsmittel im Alltag nicht brauchen (und wann doch)

Ein intaktes menschliches Immunsystem ist von Natur aus darauf angelegt, mit der Vielfalt der Mikroben in unserem alltäglichen Umfeld zurechtzukommen. Nicht zuletzt deshalb, weil viele davon uns als äusserst nützliche Mitbewohner begleiten.

Im Normalfall ist es daher im Alltag gar nicht nötig, regelmässig Desinfektionsmittel zu verwenden. Ausgenommen sind die Fälle, die eben nicht „normal“ sind:

  • Jemand im Haushalt ist krank und muss gepflegt werden (im Fall von akuten Infektionen ist dieser Umstand allerdings von vorübergehender Natur).
  • Jemand im Haushalt hat kein intaktes Immunsystem (beispielsweise durch eine Chemotherapie).

Für Menschen in diesen Situationen kann es wirklich schwierig werden, wenn Desinfektionsmittel nur noch schwer oder gar nicht erhältlich sind!

Das könnt ihr wirklich tun, um euch zu schützen

Ist hingegen „nur“ Erkältungssaison und es „geht etwas um“ (auch wenn das „Etwas“ COVID-19 heisst), sind einfache Hygienemassnahmen wesentlich wirksamer, da  schonender für die Verteidigungslinien auf unserer Haut:

  • Hustet oder niest stets in die Armbeuge anstatt einfach in die Gegend.
  • Haltet von hustenden oder niesenden Personen mindestens einen Meter Abstand.
  • Fasst euch mit ungewaschenen Händen möglichst nicht in das eigene Gesicht (und schon gar nicht in das von Anderen, beispielsweise das eurer Kinder).
  • Insbesondere gegen „Mitbringsel“ von draussen: Wascht euch, wenn ihr heimkommt (aber auch unterwegs), die Hände mit gewöhnlicher Seife, nachdem ihr in der Öffentlichkeit viel berührte Dinge (z.B. Türklinken, öffentliche Verkehrsmittel!) angefasst habt und bevor ihr zu Hause irgendetwas anderes berührt.
  • Wenn ihr bereits (infektions-)krank seid: Bleibt zu Hause. Geht nicht arbeiten und schickt kranke Kinder nicht in die Schule/den Kindergarten/die KiTa! Bei Fieber, Husten und Atembeschwerden ruft euren Arzt an (bevor ihr hingeht!) und befolgt dessen Anweisungen.

Was ihr niemals tun solltet

Desinfektionsmittel mit Seife kombinieren

Doppelt hält besser? Leider nein. In Verbindung mit Seife (also Tensiden), bergen Desinfektionsmittel im Alltag noch ein weiteres Problem:

Wenn ihr eure Hände mit Seife wascht, vergrault das eure nützlichen Mitbewohner nämlich nicht, entfernt aber den schützenden Talg, unter dem sich deren letzte Reserven verstecken, von den Haarwurzeln. Wenn ihr dann während oder nach dem Händewaschen zu einem Desinfektionsmittel greift, rottet das die letzten Reserven ebenso aus wie die Hautflora auf der Hautoberfläche. Und dann bleibt nichts mehr, was sich weiter vermehren und auf eurer Haut, dem Eingang zu eurem Körper, Wache schieben könnte.

Desinfektionsmittelhaltige Seife oder Desinfektionsmittel nach dem Seifeneinsatz sind in Hinsicht auf die Übertragung von Erregern an den Händen eher schädlich als dass sie nutzen!

Desinfektionsmittelreste in den Ausguss oder gar in die freie Natur entsorgen

Wie bereits erwähnt gibt es in Klärwerken wie auch in der Natur zahlreiche Bakterien, die für eine funktionierende Anlage bzw. ein gesundes Ökosystem notwendig sind. Und die nehmen an Desinfektionsmitteln genauso Schaden wie unliebsame Erreger.

Sämtliche Abflüsse in unserem Zellkulturlabor münden – wie vermutlich auch jene in Krankenhäusern – in spezielle Abwasser-Anlagen, die darauf ausgerichtet sind, Chemikalien im Abwasser zu beseitigen, bevor es in die eigentliche Kanalisation gelangt. So ist der Einsatz von Desinfektionsmitteln im Labor – und wahrscheinlich auch im medizinischen Bereich – eine deutlich geringere Gefahr für die Umwelt als ihr Einsatz im Alltag.

Desinfektionsmittel hamstern, wenn „etwas umgeht“

Es sei denn, ihr gehört zu jenen, die aufgrund von Krankheit oder/und unzureichendem Immunsystem wirklich auf die Nutzung von Desinfektionsmitteln im Alltag angewiesen sind. Genau diese Menschen werden euch – ebenso wie die Menschen mit Medizinberufen – sehr dankbar dafür sein, wenn sie die dringend benötigten Mittel auch während eines Ausbruchs wie dem von COVID-19 problemlos bekommen.

Das Gleiche gilt im Übrigen auch für die Gesichtsmasken. Die nützen dem Chirurgen oder Zahnarzt sehr, um seine eigenen Bakterien vom Patienten fernzuhalten. Vor einer Tröpfchen- oder Schmierinfektion mit einem Atemwegs-Virus schützen sie aber praktisch nicht.

Zusammenfassung

Desinfektionsmittel sind Stoffe, die Mikroorganismen wie Bakterien und Pilze, deren Sporen, aber auch Viren abtöten oder zumindest am Wachstum hindern können. Solche Stoffe sind naturgemäss giftig – aber für Mikroben oft mehr als für uns – und umweltschädlich.

In der Krankenpflege sind Desinfektionsmittel ein wertvolles Mittel, um die Gefahr der Übertragung von Keimen zwischen Patienten und Pflegern gering zu halten. Wie alle wirksamen Mittel haben jedoch auch Desinfektionsmittel Nebenwirkungen und bergen wie alle (umwelt-)giftigen Stoffe Gefahren.

Im Alltag überwiegen diese Schwierigkeiten den Nutzen von Hände-Desinfektionsmitteln, zumal es einfachere und nebenwirkungsärmere Mittel und Wege gibt, die Übertragung von Keimen zu vermeiden:

  • In die Armbeuge husten oder niesen
  • zu erkälteten Personen Abstand halten
  • Nicht ins Gesicht fassen
  • Hände waschen (aber nicht mit Desinfektionsmittel kombinieren!)
  • mit Infektionskrankheiten zu Hause bleiben

Wenn ihr selbst einen Pflegeberuf ausübt oder im Alltag mit kranken oder/und immunschwachen Personen lebt oder eine solche seid, kann – so meine eigene Erfahrung im Labor – eine Handcreme dabei helfen, die Hautschäden durch regelmässigen Einsatz von Desinfektionsmitteln gering zu halten.

Und wie geht ihr angesichts von COVID-19 oder anderen Erregern mit Desinfektionsmitteln um? Habt ihr vielleicht im Beruf regelmässig damit zu tun und weitere (bessere?) Tipps zur Hautpflege?

Plastik überall! Ein Kunststoff - 1x1

Kein Plastik-Spielzeug für mein Kind! Kunststoff-Verpackungen gehören reduziert! Gemüse mit Plastik-Umhüllung ist ein Unding! Die Meere sind voller Plastikmüll! Mikroplastik umgibt uns überall!

Solche Aussagen, die mir immer wieder begegnen, zeigen, dass der Begriff „Plastik“, oder auch etwas ’netter‘ gesagt „Kunststoff“ mehr denn je negativ besetzt ist. Aber sind Kunststoffe wirklich so schlecht für uns und die Welt, wie ihr Image es vermuten lässt?

Sicher ist: Ohne sie geht gar nichts mehr in unserer Alltagswelt. Wo wir auch hinschauen, sind wir von den verschiedenartigsten Kunststoffen umgeben. Allein das ist schon Grund genug, sie hier in Keinsteins Kiste zum Thema zu machen. Und da ein einzelner Artikel diesen allgegenwärtigen Stoffen nicht gerecht werden könnte, habe ich mich entschlossen, in den nächsten Wochen eine ganze Serie rund um Plastik zu bringen. Einschliesslich Experimenten zur Welt der Kunststoffe.

Und die beginnt heute mit einer Übersicht: Was ist eigentlich „Kunststoff“? Welchen Nutzen und welche Schwierigkeiten bringen Kunststoffe mit sich? Welches sind die wichtigsten Kunststoffe unserer Alltagswelt?

Was ist ein Kunststoff?

Ein Kunststoff, auch „Plastik“ oder „Plaste“ genannt, ist ein Festkörper aus synthetischen oder halbsynthetischen Polymeren mit organischen Gruppen…. Moment, langsam!

„Festkörper“ ist ja noch einfach…solch ein Stoff ist eben nicht flüssig oder gasförmig, sondern (bei alltäglichen Temperaturen) fest. Aber:

Was ist ein Polymer?

Ein Polymer ist ein riesenlanges, kettenartiges Molekül (oder eben ein Stoff aus solchen Molekülen). Die Glieder solch eines Kettenmoleküls sind kleine, sich immer wiederholende Atomgruppen. Wie eine Kette aus einzelnen Gliedern zusammen geschmiedet wird, wird auch ein Polymer mittels chemischer Reaktionen aus seinen Einzelgliedern zusammengesetzt.

Ein mögliches solches Einzelglied ist das Molekül Ethen (C2H4), auch Ethylen genannt:

In einer Art Kettenreaktion verbinden sich viele Ethylen-Moleküle zu einer Polymer-Kette. Dieses Polymer heisst deshalb „Polyethylen“.

Jeweils eine der beiden C-C-Bindungen in den Ethylen-Molekülen wird aufgetrennt und die beiden „losen Enden“ für die Verknüpfung der Moleküle untereinander verwendet. So entsteht eine beliebig lange Kette aus C2H4-Einheiten mit Einfachbindungen.

Wer hat die Polymere erfunden?

Viele Polymere in der Alltagswelt sind „synthetisch“. Das heisst, sie sind von Chemikern entworfen und in einem Labor bzw. im industriellen Massstab in einer Chemiefabrik hergestellt worden. Auch das Polyethylen gehört zu dieser Sorte.

Polymere erfunden hat hingegen die Natur. Pflanzen bestehen aus grossen Teilen aus Zellulose und speichern ihre Energie in Stärke. Beide Stoffe bestehen aus langen Ketten, die in Pflanzenzellen aus Zucker-Molekülen zusammengebaut werden. Die „Erbsubstanz“ DNA besteht aus langen Ketten sogenannter Nukleotide, die sich nur in ihren Seitengruppen, den berühmten DNA-Basen, unterscheiden. Die Abfolge dieser Basen entlang der Kette bildet den Bauplan für Proteine, die ebenfalls Polymere sind: Sie sind lange Ketten aus bis zu 20 verschiedenen Aminosäuren, die zu komplexen Strukturen zusammengefaltet sind.

Es sind also Polymere, die Lebewesen erst zu solchen machen. Und diese „natürlichen“ Polymere nennen die Chemiker und Biologen deshalb auch „Biopolymere“.

Nachdem die Natur die Polymere schon erfunden hat, machen sich Polymerchemiker diese Erfindungen zuweilen zu Nutze. Dazu nehmen sie ein Biopolymer und verändern es so, dass seine Eigenschaften schliesslich ihren Wünschen entsprechen. Zellulose reagiert zum Beispiel mit Salpetersäure zu Zellulosenitrat, auch als Schiessbaumwolle bekannt. Mit Campher als Weichmacher wird daraus Zelluloid, das vor allem als Material für Filmstreifen bekannt ist.

Aus Zellulose (links) wird Zellulosenitrat (rechts). In der Praxis wird dazu „Nitriersäure“ verwendet, die neben Salpetersäure auch Schwefelsäure enthält.

Da Schiessbaumwolle aber aus gutem Grund so heisst – unbehandelt ist sie explosiv und auch Zelluloid brennt lebhaft – hat man bald Ersatz gefunden – zum Beispiel in Form von Zelluloseacetat, das durch Reaktion von Zellulose mit Essigsäure entsteht.

Diese Art von Polymeren heisst aufgrund ihrer Herstellung „halbsynthetisch“: Den ersten Teil der Arbeit erledigt die Natur, erst der zweite Teil geschieht im Labor bzw. der Chemiefabrik.

Was macht Polymere bzw. Kunststoffe so nützlich?


  • Alltags-Kunststoffe gelten als chemisch und biologisch weitestgehend inert: Das heisst, sie reagieren weder von selbst mit alltäglichen Chemikalien, noch sind solche Reaktionen im Stoffwechsel von Lebewesen möglich. Damit sind diese Polymere als solche sehr gesundheitsverträgliche Materialien für Lebensmittelbehälter und Anwendungen am und im menschlichen Körper (z.B. als Textilien, Kinderspielzeug, Medizinprodukte). Kunststoffe wie Polyethylen fallen zudem kaum der Korrosion zum Opfer, sodass man fast alle anderen Stoffe darin aufbewahren kann.

  • Alltags-Kunststoffe haben eine wesentlich geringere Dichte als Glas oder Keramik, die chemisch ähnlich unangreifbar sind: Kunststoff-Behälter sind sehr leicht. Das gilt auch für Kunststoffbauteile in Fahr- und Flugzeugen: Der Ersatz von Metallteilen durch Kunststoffe verringert den nötigen Treibstoff erheblich!

  • Viele Alltagskunststoffe sind bruchsicher: Fällt eine Kunststoffflasche zu Boden, zerbricht sie gewöhnlich nicht. Es entstehen keine gefährlichen Scherben, der Inhalt bleibt sicher darin. Das macht Kunststoffe nicht nur im Haushalt praktisch, sondern auch zu einem hervorragenden Material für sicheres Kinderspielzeug.

  • Polymere sind während der Kunststoff-Herstellung nahezu beliebig formbar: Man kann praktisch alles daraus herstellen! Bis vor wenigen Jahren bot das Spritzgussverfahren die grösste Vielfalt (weicher bzw. flüssiger Kunststoff wird in eine vorbereitete Form gespritzt – ein „Nabel“ verrät bei solchen Teilen oft die Lage der Einspritzstelle). Heute verbreiten sich zunehmend 3D-Drucker, die lange Kunststofffasern zu computergenerierten Formen zusammenschmelzen. Damit sind wesentlich präzisere und feinere Strukturen möglich als mit dem Spritzgussverfahren.

  • Die Herstellung von Kunststoffen ist kostengünstig: Bislang zumindest, denn die meisten Alltagskunststoffe sind Erdölprodukte. Wenn das Erdöl erst einmal knapp wird, werden auch diese Kunststoffe nicht mehr so günstig zu haben sein. Deshalb wird seit Jahrzehnten Recycling betrieben und Wissenschaftler suchen eifrig nach neuen Kunststoffen aus erneuerbaren Rohstoffen oder ebenso erneuerbaren Rohstoffquellen für die gängigen Polymere.

Welche Schwierigkeiten verursachen Kunststoffe?


  • Die für uns so vorteilhafte chemische und biologische Inertheit bedeutet leider auch: Unsere Alltags-Kunststoffe sind so gut wie gar nicht biologisch abbaubar. Die Geister, die wir riefen, werden wir nun also nicht mehr los: Wo immer unsere Kunststoff-Abfälle hingeraten, bleiben sie über lange Zeiträume, vermüllen unsere Umwelt und gefährden ihre Bewohner. Auch das ist ein Grund, weshalb Wissenschaftler fleissig an neuen, besser abbaubaren Kunststoffen forschen und solche zunehmend auf den Markt gebracht werden.

  • Viele ihrer nützlichen Eigenschaften erhalten die Polymere erst durch Zusätze (die Polymerchemiker nennen sie „Additive“). Und diese Zusatzstoffe sind – im Gegensatz zu den eigentlichen Polymeren – oft weniger inert. Zudem bestehen sie aus relativ kleinen Molekülen, sodass sie leicht beweglich sind. Im Zweifelsfall bewegen sie sich aus dem Kunststoff hinaus und in dessen Umgebung – zum Beispiel den Inhalt von Kunststoffbehältern – hinein. Und da wollen wir die reaktionswilligen, im schlimmsten Fall gesundheitsschädlichen Additive absolut nicht haben. Zu den besonders berüchtigten Zusatzstoffen zählen Weichmacher, wie sie in Weich-PVC zu finden sind.

  • Viele Kunststoffe sind nicht besonders lichtbeständig: Intensiver Sonneneinstrahlung ausgesetzt verändern sich viele Kunststoffe früher oder später. Sie verlieren nicht nur ihre Farbe, sondern werden vor allem brüchig. Zugesetzte Lichtschutzmittel sollen diese Entwicklung verlangsamen.

  • Kunststoffe sind mehr oder weniger empfindlich gegenüber Wärme: Die meisten Alltagskunststoffe sind sogenannte Thermoplaste, d.h. sie werden bei höheren Temperaturen weich und verformen sich, ehe sie sich bei noch höheren Temperaturen zersetzen. Bei der Zersetzung können je nach Kunststoff giftige Kleinmoleküle freigesetzt werden. Zugesetzte Wärmestabilisatoren können jedoch dafür sorgen, dass z.B. Küchenbehälter der Temperatur von Gargut (also um die 100°C ) standhalten.

  • Kunststoffe sind brennbar: Wie die allermeisten organischen Verbindungen brennen auch Kunststoffe, wobei nur im besten Fall CO2 entsteht. Viel häufiger sind andere, teils giftige Zersetzungsprodukte, die auch den typischen Gestank eines Kunststoffbrandes mit sich bringen. Zugesetzte Flammschutzmittel sollen insbesondere in Gebäuden und Fahrzeugen verhindern, dass verbaute Kunststoffe in Flammen aufgehen und zum Niederbrennen des Gebäudes führen.

  • Die meisten Kunststoffe werden aus Erdöl, also aus einer endlichen Rohstoffquelle, gewonnen.

Welche Kunststoffe begegnen uns im Alltag?

Polyethylen und Polypropylen (PE bzw. PP)

Diese beiden Polymere bestehen aus chemisch eng miteinander verwandten Kettengliedern. So sind ihre Eigenschaften und damit auch ihre Einsatzgebiete ähnlich. Beide Kunststoffe sind sehr reaktionsträge. Polypropylen bleibt allerdings bis zu höheren Temperaturen fest als Polyethylen. Deshalb sind Küchengefässe meistens aus Polypropylen, während z.B. Medikamentendosen und Laborbehälter, die nicht erhitzt werden sollen, oft aus Polyethylen („HDPE“ – high density PE mit geringfügig höherer Dichte). Auch die durchsichtigen Folienbeutel mit Clip-Verschluss bestehen entweder aus Polypropylen oder Polyethylen („LDPE“ – low density PE mit geringfügig niedrigerer Dichte).

Medikamentendosen, Kosmetikverpackung, Gefrierdose und Folienbeutel aus Polyethylen
Medikamenten- und Kosmetikbehälter sowie der Gefrierdosen-Deckel und die Folienbeutel sind aus Polyethylen. Die Recycling-Symbol mit „04“ und „PE-LD“ bzw. „02“ und „PE-HD“ verraten uns das Material.
DVD-Hülle, Gefrierdose und Mehrfachsteckdosengehäuse aus Polypropylen
In die Gefrierdose können nicht nur kalte, sondern auch heisse Speisen gefüllt werden: Sie ist aus hitzebeständigerem Polypropylen. Daraus bestehen auch DVD-Hüllen und das Gehäuse der Mehrfachsteckdose. Das Recyclings-Symbol dafür zeigt „05“ und „PP“.

Polyvinylchlorid (PVC)

Wie der Name vermuten lässt, enthält jedes Kettenglied dieses Polymers ein Chlor-Atom. Dadurch ist dieser Kunststoff schwerer entflammbar als viele andere. Wenn er aber einmal brennt, entstehen daraus Chlorwasserstoff („Salzsäure“) und andere giftige Stoffe. Reines PVC ist hart und spröde und wird für die Herstellung von Fensterrahmen, Rohre und Schallplatten (daher die Bezeichnung „Vinyl-Platten“) verwendet. Durch die Zugabe von Weichmachern kann es elastisch gemacht werden. Dann kommt es z.B. als Kabelumhüllung, Bodenbelag oder in Spielzeugen wie Kunststoffpuppen zum Einsatz. Einige dieser Weichmacher gelten jedoch als gesundheitsschädlich, was PVC gerade im Spielzeugbereich in Verruf gebracht hat.

Kabelummantelungen und Badeente aus PVC
Kabelummantellungen und die Badeente sind aus Weich-PVC. Das Recycling-Symbol für Polyvinylchlorid zeigt „03“ und „PVC“.

Polyethylenterephthalat (PET)

Das bekannte Material für Einweg-Getränkeflaschen („PET-Flaschen“) gehört zur Gruppe der Polyester. Es ist sehr reaktionsträge und bruchsicher, sodass es sich nicht nur für Getränkeflaschen, sondern auch für Textilfasern (zum Beispiel für schnelltrocknende Sportbekleidung) wunderbar eignet. PET lässt sich zudem sehr wirtschaftlich recyceln. Die Schweiz hat ein eigenes Recycling-System dafür: Die blau-gelben Container mit dem PET-Dino sind speziell für die PET-Flaschen gedacht (alle anderen Kunststoffe landen hierzulande nämlich oft über den Restmüll in der Müllverbrennung).

PET-Flaschen, PET-Rohling und Butterdose aus PET
Nicht nur Getränke, sondern auch Reinigungschemikalien und Butter werden in PET-Flaschen verkauft. Aus dem PET-Rohling rechts vorne kann durch Aufblasen des erwärmten Kunststoffs eine PET-Flasche produziert werden. Das Recyclings-Symbol zeigt „01“ und „PET“.

Polystyrol (PS), auch bekannt als Styropor

Dieser Kunststoff lässt sich zu extrem leichtem Material aufschäumen („Quietschpapier“), das wir vor allem als Verpackungsmaterial oder Wärmedämmung kennen. Es gilt als biologisch inert, sodass es auch als Lebensmittelverpackung (z.B. Fleischschalen) zum Einsatz kommt. Polystyrol wird jedoch auch in massiver Form verarbeitet: Dann ist es glasklar und begegnet uns z.B. als Plastikbesteck, CD-Hüllen oder Spielzeug.

Styropor, CD-Hülle, Joghurtbecher und Plastikbesteck aus Polystyrol
Polystyrol begegnet uns nicht nur als Styropor, sondern auch in Form von CD-Hüllen, Plastikbesteck und Joghurtbechern. Das Recyclings-Symbol zeigt „06“ und „PS“.

Polyurethane (PU, PUR)

Diese Kunststoffe lassen sich aufschäumen, sodass wir ihn hauptsächlich als „Schaumstoff“ in Polstern, Wärmedämmung oder Putzschwämmen kennen. Auch der gelbe Hartschaum, den man in manchen Gebäuden um Rohrleitungen oder in Fugen findet, ist ein Polyurethan-Kunststoff. In massiverer Form begegnen uns Polyurethane zudem Lacke, Kunstharze oder „Kunstleder“ – zum Beispiel als Material für Schläuche oder Fussbälle.

Schaumstoffe und Schwamm aus Polyurethan
Schwämme und andere Schaumstoffteile bestehen aus Polyurethanen.

Polyamid (PA)

Diese Bezeichnung kennen wir vor allem von Kleidungsetiketten. Tatsächlich begegnen uns Polyamide (auch das ist eine ganze Kunststoff-Gruppe) meistens als Textilfasern. Berühmte Handelsnahmen solcher Kunstfasern sind „Nylon“ und „Perlon“. Auch Zahnbürsten-Borsten, Instrumentensaiten, Kunststoffseile und Angelschnur bestehen aus Polyamiden. In der Schweizer Mundart wird solche Nylonschnur auch als „Silch“ bezeichnet.

Sporthose, Küchenbesteck und Zahnbürste aus Polyamid
Nicht nur meine Sporthose, sondern auch das Küchenbesteck und die Borsten der Zahnbürste bestehen aus Polyamiden. Kürzel wie „PA 6“ oder „PA 6.6“ auf dem Besteck verraten dieses Material.

Polyester

Diese Bezeichnung auf Kleideretiketten ist im Grunde genommen eine recht ungenaue Bezeichnung für eine sehr grosse Familie von chemisch ähnlich hergestellten Kunststoffen. Besonders wichtige Vertreter sind das schon genannte PET, aber auch die Polycarbonate und die Polymilchsäure / Polylactid PLA. Die Polyesterfaserstoffe in Textilien oder Mikrofasern werden kurz als PES bezeichnet. Weitere Familienmitglieder sind Polyesterharze, die im Gegensatz zu den Fasermaterialien nach dem Aushärten stets hart und fest bleiben.

Polycarbonate (PC)

Diese Vertreter der Polyesterfamilie sind besonders hart, schlag- und kratzsicher – und überdies glasklar. Zudem sind sie zwar entflammbar, brennen aber nicht ohne Flamme von aussen weiter. Ihre Herstellung ist allerdings teurer als die anderer Kunststoffe, sodass sie nur dort zum Einsatz kommen, wo andere Kunststoffe nicht hart genug sind: Für CDs, Brillengläser, als Ersatz für Glas, Koffer oder medizinische Einmalprodukte.

CD, DVD und Brillengläser aus Polycarbonat
Aus Polycarbonaten sind vor allem Gegenstände, die kratzfest sein müssen: Zum Beispiel Brillengläser und CDs bzw. DVDs.

Polymilchsäuren oder Polylactide (PLA)

Dieser Vertreter der Polyester besteht aus Kettengliedern, die in jedem Lebewesen vorkommen: Aus Milchsäure bzw. deren Anion „Lactat“. Der Rohstoff für diese Kunststoffe wächst also nach – zum Beispiel in Mikrobenkulturen! Dementsprechend haben Lebewesen auch Enzyme entwickelt, die mit Milchsäureestern umzugehen wissen: PLA ist deshalb biologisch abbaubar. ABER: Dazu sind besondere Umweltbedingungen (u.A. eine erhöhte Temperatur) nötig, die nur in industriellen Kompostieranlagen gegeben sind! Trotzdem verbreiten sich PLA zunehmend, zum Beispiel als Material für Einweggeschirr oder für den 3D-Druck. Auch in „physiologischer Umgebung“ in lebenden Körpern werden PLA mit der Zeit abgebaut, sodass sie auch als selbstauflösendes chirurgisches Garn zum Einsatz kommen. Mehr über PLA könnt ihr hier in Keinsteins Kiste nachlesen.

Kautschuke („Gummi“)

Der Naturkautschuk, der aus Kautschukpflanzen gewonnen wird, ist ein echter Naturstoff, kein Kunststoff. Das gilt auch für das daraus gewonnene Naturlatex – ein Kautschukprodukt (deshalb kann Latex Allerdien auslösen: Es kann – wie viele Naturprodukte – Spuren von allergenen Proteinen enthalten). Haupteinsatzgebiet von Kautschuk ist die Herstellung von Autoreifen. Während der Weltkriege haben Wissenschaftler anhand des natürlichen Vorbilds synthetische Kautschuke – also Kunststoffe – entwickelt, um von den Kautschukplantagen in tropischen Gebieten unabhängig zu sein. Doch in jüngerer Zeit wird ein zunehmender Anteil des Gummibedarfs durch Naturkautschuk gedeckt – mit allen Umweltproblemen, die der Anbau in grossem Massstab mit sich bringt. So sind LKW- und Flugzeugreifen meist aus Naturkautschuk, während PKW-Reifen meist aus Synthesekautschuken bestehen. Spezielle Synthesekautschuke sind überdies das Neopren, aus dem Taucheranzüge bestehen, und der Nitrilkautschuk, aus dem die besonders undurchlässigen blauen Einmalhandschuhe in Labor und Arztpraxis gefertigt sind.

Silikone

Diese Polymere sind Exoten unter den Kunststoffen. Denn ihre Ketten bestehen nicht wie bei den übrigen Kunststoffen aus Kohlenstoff, sondern aus Silizium- und Sauerstoffatomen. Diese besondere Struktur verleiht Silikonen eine besonders gute Verträglichkeit mit unseren Körpergeweben, was sie als Material für Implantate (z.B. „Silikon-Brüste“) und andere Medizinprodukte beliebt macht. Die meisten Silikone im Alltag erscheinen elastisch wie „Gummi“. Deshalb sprechen Fachleute auch von „Silikonkautschuk“. Auch Küchengeräte sowie Schnuller („Nuggi“ in der Schweiz) aus Silikonkautschuk sind weit verbreitet, ebenso wie Fugendichtungsmasse in Badezimmer und Küche.

ABS-Kunststoffe (Acrylnitril-Butadien-Styrol-Copolymere)

Als Copolymere bezeichnet man Polymere, deren Ketten sich aus verschiedenartigen Gliedern zusammensetzen. Damit sind auch DNA und Proteine Copolymere: Erstere bestehen aus 4, zweitere aus 20 verschiedenen Gliedersorten. Die ABS-Kunststoffe bestehen aus 3 grundlegenden Gliedersorten. Sie zeichnen sich durch besondere Schlagzähigkeit aus und lassen sich gut mit Metallen oder anderen Polymeren beschichten. Legosteine und Playmobil bestehen aus ABS-Kunststoffen, und diese Spielzeuge sind ja bekanntlich nahezu „unkaputtbar“. Ausserdem sind ABS-Kunststoffe als Material für Gehäuse von elektronischen Geräten, auch in Autos oder für robuste Teile von Musikinstrumenten und Sportgeräten begehrt.

Legosteine und Blutdruckmessgerät aus ABS-Kunststoff
Legosteine und das Gehäuse des Blutdruckmessgeräts bestehen aus robusten ABS-Kunststoffen. Auf der Innenseite der Batterieklappe des Blutdruckmessgeräts habe ich das Kürzel „ABS“ entdeckt, welches auf das Material hinweist.

Fazit

Kunststoffe bestehen aus sogenannten Polymeren – langen Molekülketten aus sich wiederholenden Gliedern – die vollständig oder teilweise im Labor bzw. industriell hergestellt werden. Der Ausgangsstoff für die Herstellung der meisten Kunststoffe ist Erdöl, doch kommen zunehmend Kunststoffe aus anderen, bestenfalls erneuerbaren Rohstoffquellen zum Einsatz.

Die Materialeigenschaften von Kunststoffen lassen sich nahezu nach Wunsch gestalten. Allerdings sind dazu oft Zusatzstoffe (Additive) nötig, die den Kunststoffen einen grossen Teil ihres schlechten Rufs eingebracht haben. Dennoch ist die Welt der Kunststoffe äusserst vielfältig und „Plastik“ längst nicht gleich „Plastik“. Es lohnt sich, nicht alle Kunststoffe über einen Kamm zu scheren. Insbesondere, da wir heutzutage kaummehr ohne sie auskommen.

Zu meinen Lieblingskunststoffen zählen wohl Polyethylen (darin kann man wirklich fast alles aufbewahren), die Polylactide (Biokunststoffe sind irgendwie cool) und die ABS-Kunststoffe (fast unkaputtbar…und ich liebe Lego… 😉 ). Welcher ist denn euer Lieblingskunststoff?

Experiment: Ein Weihnachtsdüfte-Puzzle

Adventszeit und Weihnachten…diese Zeit himmlischer Düfte weckt in euch hoffentlich ebenso sehr Behaglichkeit und angenehme Erinnerungen wie in mir. Anis, Zimt und andere Gewürze sowie Tannengrün und vieles mehr regen in diesen Tagen unsere Nasen an. Aber was ist eigentlich ein Duft – und wie gut können unsere Nasen ihn wahrnehmen?

Probiert es aus – mit diesem kleinen Experiment – das auch für ganz junge Forscher (die bereits sprechen und neue Wörter lernen mögen) eine spannende Erfahrung ist!

Adventskränzchen 2019
Dieser Beitrag ist Teil des Adventskränzchens 2019.
Weitere Beiträge zum Tagesthema „Zimt, Anis & Co“ findet ihr auf:
www.marie-theres-schindler.de
http://www.diekunstdesbackens.com

Was ist ein Geruch?

Der Geruch ist eine Eigenschaft von Stoffen (oder Stoffgemischen), die wir mit unserer Nase, unserem Geruchssinn, wahrnehmen können. Empfinden wir einen Geruch als angenehm, sprechen wir gern von einem Duft. Ein unangenehmer Geruch hingegen heisst zum Beispiel ‚Gestank‘.

Den Geruch eines Stoffs können wir wahrnehmen, wenn seine Moleküle sich mit Luft vermischen und darin herumschwirren, sodass wir sie einatmen können. Denn indem wir durch die Nase einatmen, befördern wir diese Moleküle zu den Geruchszellen tief im Innern der Nasenhöhle.

Jede Geruchszelle hat an ihrer Oberfläche eine ihr ganz eigene Sorte Proteine, die perfekte Andockstellen für jeweils eine ganz bestimmte Molekülsorte bilden. Docken passende Moleküle an diese Proteine an, wird in der Geruchszelle ein elektrisches Signal erzeugt und an das Gehirn weitergeleitet. Das Gehirn erkennt, woher dieses Signal kommt, und macht daraus den Eindruck des zugehörigen Geruchs.

Wie gut wir riechen können

Menschen haben 200 bis 400 verschiedene Sorten Geruchszellen und können damit ebenso viele verschiedene Stoffe riechen. Da das Gehirn jedoch verschiedene Geruchssignale wie Farben mischen kann, sind – dank rund 10 Millionen Geruchszellen insgesamt – können wir weitaus mehr, nämlich bis zu einer Billion verschiedene Geruchseindrücke und Nuancen erleben.

Damit das Gehirn einen Geruch als solchen wahrnimmt, müssen etwa 10 bis 100 Millionen stark riechende Moleküle „ihre“ Geruchszellen zu einem elektrischen Trommelfeuer bewegen… Das klingt nach viel – ist es aber nicht. Ein Milliliter Luft enthält nämlich rund 25’000’000’000’000’000’000 , also 25 Millionen Millionen Millionen (25 Trillionen) Moleküle! Wenn also jedes 250-milliardste Molekül darin einen Geruch hat, können wir ihn riechen.

Ein Hund würde darüber aber nur müde lachen (wenn er das könnte). Er hat nämlich einen rund 1000 mal feineren Geruchssinn als wir Menschen. Deshalb lassen wir uns ja gerne von Hunden helfen, wenn es um das Erkennen sehr schwacher Gerüche geht. Zum Beispiel beim Verfolgen einer Fährte oder dem Aufspüren von Drogen in einem geschlossenen Koffer.

Übung macht den Meister

Das Erkennen von Stoffen an ihrem Geruch kann man wunderbar üben. Zum Beispiel mit meinem Weihnachtsduft-Puzzle. Könnt ihr die adventlichen Düfte darin den Bildern oder Namen zuordnen?

So bastelt ihr euer Weihnachtsduft-Puzzle

Ihr braucht dazu

Free Printable: Die Links starten den Download des jeweiligen pdf-Dokuments zum Ausdrucken!

So geht’s

Zunächst bastelt ihr euer Duftpuzzle zusammen.

  • Zeichnet auf dem dünnen Papier Kreise um eine Teelichthülle. Der Durchmesser der Kreise soll auf jeder Seite 5 bis 7 Millimeter länger sein als der Durchmesser der Teelichthülle. Dann schneidet die Kreise aus. Nun solltet ihr für jede Teelichthülle einen Papierkreis haben.
  • Legt die Kreise auf die Unterlage aus Kork oder dicker Pappe und stecht mit der Nadel Löcher in die Mitte jedes Kreises. Die Löcher sollen klein sein – da sollen Moleküle hindurch, nichts anderes.
  • Schneidet aus der Bildervorlage die Bilder aus, die ihr verwenden möchtet und klebt sie mit Fotoklebern auf die Unterseite der Teelichthüllen.
  • Füllt in jede Teelichthülle das zum Bild passende Gewürz, Orangen- oder Mandarinenschale, Tannennadeln oder andere Duftquellen*.
  • Befestigt das durchlöcherte Papier wie einen Deckel auf jeder offenen Teelichthülle und befestigt es mit Klebestreifen. Nun könnt ihr nicht mehr sehen, was darin ist, aber riechen oder auf der Unterseite nachschauen. 
fertiger Behälter mit verstecktem Duft

Wichtige Hinweise

*Ihr könnt natürlich auch ätherische Öle verwenden. Wenn ihr mit Kindern bastelt und spielt, verwendet aber keine konzentrierten bzw. „reinen“ Öle! Die Natur ist nämlich alles andere als sanft: Konzentrierte ätherische Öle können die Haut und die Augen reizen und bei Verschlucken gesundheitsschädlich sein! Auch sind viele davon giftig für Wasserorganismen und gehören daher nicht in die Umwelt, sondern in den Sonderabfall entsorgt.

Viele ätherische Öle lassen sich nicht mit Wasser mischen, sodass sie meist mit Ethanol („Alkohol“) verdünnt werden. Der hat jedoch einen eigenen Geruch und ist in seiner billigsten Form – Brennspiritus – zusätzlich mit übelriechenden Stoffen „vergällt“. Deshalb empfehle ich für ein unbeschwertes Geruchserlebnis, die Gewürze und Zutaten in ihrer natürlichen Form zu verwenden.

Ob konzentriert oder verdünnt: Viele der duftenden Naturstoffe können allergische Reaktionen auslösen. Behaltet eure Jungforscher deshalb im Auge – auch nach dem Spielen mit dem Duft-Puzzle – und sortiert, wenn euch eine Reaktion auffällt, einen möglichen Auslöser vor dem nächsten Spiel aus. Oder, sollte euch eine Allergie gegen einen der Stoffe schon von vorneherein bekannt sein, lasst ihn gleich weg.

Jetzt könnt ihr mit dem Duftpuzzle spielen

Legt den Spielplan auf den Tisch und die Duftbehälter mit den Löchern nach oben und den Bildern nach unten daneben. Lasst die Jungforscher nun einen Behälter nach dem anderen auswählen und daran schnuppern (nicht auf die Unterseite schauen!). Könnt ihr die Behälter auf den passenden Bildern platzieren? Wenn ihr eure Wahl getroffen habt, könnt ihr die Behälter umdrehen und schauen, ob ihr richtig liegt.

  • Für ganz junge Forscher: Lasst die Kinder vor dem Spiel den Geruch der Gewürze und Zutaten ausserhalb der Behälter „probieren“, benennt sie gemeinsam und überlegt, woher (z.B. von welchen Lebensmitteln) die Kinder den Geruch kennen. So können die Kinder neu gelernte Begriffe beim Spiel verwenden und einüben.
  • Für Forscher, die schon lesen und schreiben können: In der „Schulkinder“-Version des Spielbretts stehen auch die Namen der Gewürze und Duftquellen auf den Bildern. Stattdessen könnt ihr auch das Spielbrett ohne Text verwenden und die Jungforscher die erschnüffelten Duftquellen zunächst aufschreiben lassen.
  • Für Chemie-Experten: Kennt ihr auch die chemischen (Trivial-)Namen der verschiedenen Duft-Moleküle? Und welcher gehört zu welchem Gewürz? Anstelle der Bilder könnt ihr auch die Molekül-Namen (oder Strukturformeln?) auf der Unterseite der Behälter anbringen und gemeinsam mit der erschnupperten Duftquelle benennen.

Natürlich könnt ihr auch mit ganz anderen Düften oder Gerüchen oder mit einer grösseren Auswahl ein Duftpuzzle bauen – ganz wie es euch Freude macht.

Was duftet denn da?

Die meisten natürlichen Düfte sind Gemische verschiedener Moleküle, die unserer Nase und damit unserem Gehirn den Eindruck eines Duftgemischs vermitteln. Das gilt auch für ätherische Öle, die in der Regel direkt aus Pflanzenteilen gewonnen werden (synthetische ätherische Öle sind Nachbildungen solcher Gemische, die jedoch meist nicht alle Feinheiten des natürlichen Aromas aufweisen). Deshalb habe ich im Folgenden für jede Pflanze nur das jeweils wichtigste Duftmolekül aufgeführt.


Strukturformel Benzaldehyd

Marzipan: Benzaldehyd

Der wichtigtste Bestandteil von Marzipanduft ist Benzaldehyd, ein kleines Molekül, das nach Bittermandeln duftet. In den Bittermandeln ist aber nicht von vorneherein Benzaldehyd enthalten, sondern ein Stoff namens Amygdalin, der von Enzymen zu Benzaldehyd und hochgiftiger Blausäure (Cyanwasserstoff) zersetzt wird. Deshalb sind Bittermandeln nicht essbar! Im Marzipan kommt das Benzaldehyd jedoch ohne Blausäure aus, sodass wir es ohne Sorge geniessen können. Auch das Aroma von Weinen wird nicht zuletzt von Benzaldehyd bestimmt.



Strukturformel Anisaldehyd

Anis: Anisaldehyd

Sowohl echter Anis als auch der nicht damit verwandte Sternanis sowie Fenchel und andere Kräuter enthalten einen Stoff namens trans-Anethol, der an der Luft zum duftenden Anisaldehyd und Anissäure zersetzt wird. Ist euch die Ähnlichkeit des Anis-Dufts zum Fenchelgeruch aufgefallen? Das Bild auf dem Spielplan zeigt übrigens nicht den echten Anis (einen Doldenblütler, dessen Samen wir im Gewürzregal finden können), sondern Sternanis, der ursprünglich aus China kommt, heute aber auch hierzulande sehr beliebt ist.



Strukturformel  Zimtaldehyd

Zimt: Zimtaldehyd

Zimtpulver, wie wir es aus dem Gewürzschrank kennen, wird aus der Rinde des Zimtbaums (Cinnamomum verum) gewonnen. Der wichtigste Duftstoff im darin enthaltenen Zimtöl ist Zimtaldehyd (trans-Cinnamal). Da viele Menschen seinen Duft als sehr angenehm und appetitlich empfinden, ist dieser Stoff sowohl als Gewürz (im Zimt) als auch als Kosmetikduft sehr beliebt. Allerdings ist Zimtaldehyd auch dafür bekannt, Allergien auszulösen.



Strukturformel Eugenol

Gewürznelken: Eugenol

Eugenol, der wichtigste Bestandteil des ätherischen Öls aus Gewürznelken, ist in der Pflanzenwelt weit verbreitet. So ist Eugenol nicht nur ein weiterer wichtiger Bestandteil von Zimtöl, sondern zum Beispiel auch in Piment, Lorbeer, Basilikum, Kirschen und Bananen zu finden. Eugenol ist nicht nur bei Parfumherstellern beliebt, sondern wirkt auch schwach schmerzstillend und antibakteriell.



Strukturformel Vanillin

Vanille: Vanillin

Der wichtigste Duftstoff aus der Vanilleschote ist ganz klar das Vanillin mit seinem typischen Aroma. Das Vanillin-Molekül sieht nicht von ungefähr dem Eugenol ähnlich – man kann Vanillin recht einfach aus Eugenol herstellen. Nur: Wer Eugenol, also Nelkenaroma hat, möchte das in der Regel auch behalten. Aber zum Glück gibt es noch einen anderen passenden Ausgangsstoff: Lignin, das in Holz zu finden ist. So entstammt das preisgünstige Aroma in Vanillinzucker in der Regel Holzresten. Richtige Vanilleschoten und damit hergestellter Vanillezucker sind teurer, enthalten dafür aber das ganze natürliche Duftstoffgemisch.



Strukturformel Gingerol

Ingwer: Gingerol

Der führende Aromastoff des Ingwers, Gingerol, liefert eine in dieser Runde einzigartige Geschmacksnote: scharf! Und zwar so richtig scharf (60.000 Scoville auf der gleichnamigen Schärfeskala – das ist mehr als reiner Cayennepfeffer zu bieten hat!). Vermutlich empfinden wir Gingerol nicht von ungefähr als scharf, denn in grösseren Mengen verzehrt ist dieser Stoff giftig. In unseren geniessbaren Zubereitungen aus dem Rhizom (der „Wurzel“) der Ingwerpflanze, in welchem Gingerol vorkommt, ist allerdings so wenig davon vorhanden, dass ihre nützlichen Wirkungen, zum Beispiel gegen Magen-Darm-Beschwerden, überwiegen.


Aromaten – der Name ist Programm

Alle bisherigen Moleküle haben eines gemeinsam: Sie enthalten einen Benzolring. Chemiker haben dieser Stoffgruppe, deren Benzolringe aus einer ganz besonderen Art von chemischen Bindungen bestehen, nach ihrer leicht wahrnehmbaren Gemeinsamkeit benannt. Die meisten der Benzolring-Moleküle haben nämlich einen ganz eigenes, für uns Menschen wahrnehmbares Aroma – einen Geruch. Deshalb nennen die Chemiker diese Verbindungen „aromatische Verbindungen“ oder kurz „Aromaten“.

Es gibt aber noch viele andere Stoffgruppen, die richtig dufte sind. So enthalten ätherische Öle vielfach sogenannte Terpene. Ein Vertreter dieser Gruppe ist


Strukturformel R-Limonen

Orangenschale: R-Limonen

Limonen ist das häufigste sogenannte Monoterpen in Pflanzen. So kommt R-Limonen nicht nur in Zitrusfrüchten, sondern auch in Kümmel, Dill und Koriander vor. Sein Spiegelbild, das S-Limonen (das nach Terpentin riecht), findet man indessen in Edeltannen und Pfefferminze. In Fichtennadeln, Muskatnuss und Campher sind sogar beide Spiegelbilder, das R- und das S-Limonen enthalten. Die Doppelbindungen zwischen den Kohlenstoffatomen in ihren Molekülen machen Terpene ziemlich reaktionsfreudig. So können Limonen-Dämpfe mit Luft entzündliche Gemische bilden. Aber keine Sorge: So viel ist davon in Orangenschalen nicht drin.


Ebenfalls häufig geruchsreich sind Verbindungen, die eine sogenannte Aldehydgruppe enthalten und daher „Aldehyde“ genannt werden. Eine Aldehydgruppe besteht aus einem Kohlenstoff-Atom, das über eine Doppelbindung mit einem Sauerstoffatom und zusätzlich mit einem Wasserstoffatom verbunden ist. Viele der oben genannten aromatischen Verbindungen enthalten auch eine solche Gruppe – und damit gleich zwei „dufte“ Komponenten.

Ein ganz simples Aldehyd ist dagegen für den weihnachtlichen Tannenduft zuständig.


Strukturformel Laurinaldehyd

Edel-Tanne: Laurinaldehyd

Laurinaldehyd, auch Dodecanal, besteht aus einer Kette aus zwölf Kohlenstoffatomen (mit Wasserstoffatomen), deren letztes eine Aldehydgruppe trägt. Es ist einer der wichtigsten Aromastoffe aus dem Tannenöl, das zum Beispiel aus den Nadeln der Edel-Tanne gewonnen wird. Von allen Tannenzweigen im Handel hat die Edel-Tanne („Nobilis“) den intensivsten Tannenduft, sodass ich genau diese Zweige für meinen Adventskranz bevorzuge.


Entsorgung

Die Gewürze, die ihr in das Puzzle füllt, könnt ihr nachher natürlich noch anderweitig verwenden. Tannennadeln und Orangenschalen können, wenn nicht anders verwendet, problemlos in den Grünabfall. Teelichthüllen aus Aluminium können in der Schweiz an der Kehrichtsammelstelle in den Metallcontainer, in Deutschland und Österreich in die gelbe Tonne entsorgt werden. Oder ihr hebt sie einfach für die nächste Duftpuzzlerunde auf.

Nun wünsche ich euch viel Spass beim Erkunden der weihnachtlichen Düfte!

Hast du das Experiment nachgemacht:

[poll id=“4″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Wie funktioniert ein Lithium-Ionen-Akku?

Gestern wurden die Nobelpreise für 2019 vergeben: Der Nobelpreis für Chemie geht an John B. Goodenough, M. Stanley Whittingham und Akira Yoshino – für eine wahrhaft weltbewegende Erfindung: Den Lithium-Ionen-Akku.

Ein Preis für den grössten Nutzen für die Menschheit

Der schwedische Erfinder und Industrielle (u.A. Erfinder des Dynamits) Alfred Nobel verfügte vor seinem Tod am 10. Dezember 1896 in seinem Testament, dass von seinem riesigen Vermögen eine Stiftung gegründet werde, deren Zinsen „als Preis denen zugeteilt werde, die im verflossenen Jahr der Menschheit den grössten Nutzen geleistet haben“. Das Preisgeld wird zu gleichen Teilen in den Bereichen Physik, Chemie, Medizin bzw. Physiologie, Literatur und Friedensbemühungen vergeben*.

*Der ebenfalls oft genannte „Wirtschaftsnobelpreis“ ist dagegen kein „echter“ Nobelpreis: Er heisst eigentlich Alfred-Nobel-Gedächtnispreis für Wirtschaftswissenschaften und wird erst seit 1968 von der Schwedischen Reichsbank gestiftet.

Die Nobelpreise werden seit 1901 bis heute vergeben (teils mit Verspätung oder Auslassung, wenn kein würdiger Träger gefunden wurde oder ein Weltkrieg dazwischen kam). Dabei wird in jüngerer Zeit längst nicht mehr Leistungen des jüngsten „verflossenen“ Jahres ausgezeichnet. Stattdessen wird Erfindungen und Bemühungen – besonders in den wissenschaftlichen Disziplinen – Zeit gegeben, ihre Bedeutung für die Menschheit zu beweisen.

Wie Lithiumionen-Akkus die Welt verändert haben

So werden auch die Träger des Nobelpreises für Chemie 2019 für Leistungen geehrt, die sie in den 1970er und 1980er Jahren vollbracht haben. Und die haben wahrhaftig unsere Welt verändert!

Eine Zeit ohne Hochleistungs-Akkus

Wenn ihr mindestens so alt seid wie ich (ich bin Anfang der 1980er Jahre geboren), werdet ihr euch noch an die Zeit erinnern, als Einwegbatterien meist giftiges Cadmium enthielten, wenig Leistung lieferten und eine geringe Lebensdauer hatten. Tragbare Kassettenspieler hatten monströse Batterieschächte, lichtstarke Taschenlampen konnten als Totschläger zweckentfremdet werden und leistungsstärkere Elektrogeräte gab es nur fest verortet an der Steckdose.

Wiederaufladbare Batterien, sogenannte Akkus, waren der neueste Schrei. Die ersten Vertreter ihrer Art waren schwere Brocken, denn sie enthielten ebenso giftiges wie schweres Blei. Die Nickel-Metallhydrid-Akkus, an die ich mich aus meinen letzten Jugendjahren noch erinnere, enthielten ebenfalls ein giftiges Schwermetall – Nickel – und konnten, bei nur wenig geringerem Gewicht, in ihrer Kapazität auch nicht mit den Einweg-Batterien mithalten.

1991 kam der Lithium-Ionen-Akku auf den Markt –  und erst Jahre später in meine Welt. Nämlich Mitte der 1990er verbaut in Papas erstem tragbaren PC – pardon, „Laptop“, von seinem damaligen Arbeitgeber. Der wog dereinst noch rund 4 Kilogramm – konnte aber, was jeder Office-PC an der Steckdose leistete! Darauf folgte sein erstes Mobiltelefon…und schon kurz darauf, um das Jahr 2000, konnte ich mir schon ein handliches Pre-Paid-Handy vom Schülerinnen-Taschengeld leisten.

Die neue Welt der Mobilität

Heute schreibe ich diesen Artikel an meinem modernen Convertible, der gerade einmal ein Kilo wiegt und trage einen Taschencomputer mit Telefonfunktion, der kleiner als eine Tafel Schokolade ist und mehr Rechenleistung aufbringt als Papas 4-kg-Laptop von damals, im Dauerbetrieb mit mir herum. Und das einen ganzen Tag lang.

Mein Lieblings-Autovermieter hat mir unlängst als nette Zusatzüberraschung ein Hybrid-Fahrzeug ausgehändigt, dessen Akku über den Dynamo im Verbrennungsmotor aufgeladen wird und damit langsame Fahrt mit einem Elektromotor machen kann. Auch im vollständig elektrisch betriebenen Tesla bin ich schon ein kleines Stück mitgefahren.

Ganz schön gross: Lithium-Ionen-Akku für ein Elektroauto (der erste, der in den USA von einem grossen Autobauer hergestellt wurde)
(by ENERGY.GOV [Public domain], via Wikimedia Commons)

Die Garage des Tesla-Besitzers mag statt mit Schindeln mit Solarzellen, die aus Sonnenenergie Strom erzeugen und in einen grossen „Tankstellen-„Akku speisen, gedeckt sein.

Besonders diese letzten Entwicklungen mögen die Jury zur Vergabe des Preises bewegt haben:

„Sie haben die Grundlage gelegt für eine drahtlose, von fossilen Brennstoffen freie Gesellschaft und sind für die Menschheit von größtem Nutzen.“ 

Aber wie funktioniert eigentlich ein Lithium-Ionen-Akku?

Im Grunde genommen ist ein Akku (-mulator) eine Spielart der Batterie, nämlich eine wiederaufladbare Batterie.

Was ist eine Batterie?

Eine Batterie im Allgemeinen ist ein Speicher für elektrischen Strom. Da „elektrischer Strom“ ein Strom aus negativ geladenen Teilen, den Elektronen, ist, bedeutet das: Eine Batterie ist ein Behälter, in welchem Elektronen getrennt von positiven Ladungen aufbewahrt werden.

Eine einfache Batterie (auch: galvanische Zelle) zum Nachbau im Labor: Ein Zinkblech in Zinksulfatlösung (rechter Behälter) enthält viele Elektronen (Zink gibt seine Elektronen nämlich gerne ab und wird zu Zink-Ionen Zn2+ ). Kupferionen Cu2+ bilden einen Vorrat an positiven Ladungen im linken Behälter (sie nehmen nämlich gerne Elektronen auf und gesellen sich zu den Kupfer-Atomen im Kupferblech). Wenn Elektronen vom Zink zum Kupfer wandern, wandern zum Ladungsausgleich Sulfat-Ionen SO42- über die Salzbrücke (ein mit Salzlösung gefülltes Glasrohr) vom linken in den rechten Behälter. Sobald alle beteiligten Reaktionen zu einem chemischen Gleichgewicht (Was ist das? Le Châtelier erklärt es hier!) gefunden haben, kommen die Ladungsströme zum Erliegen: Die Batterie ist „leer“.
(by Myukew [CC BY-SA 3.0], via Wikimedia Commons)

Nun lassen sich Elektronen nicht freiwillig von positiven Ladungen trennen (positive und negative Ladungen finden einander nämlich äusserst anziehend). Eine Batterie zu erschaffen erfordert dementsprechend Energie – die bei ihrer Benutzung in Form des elektrischen Stroms an das betriebene Elektrogerät weitergegeben wird.

Verbindet man die beiden Teilbehälter (die „Pole“ einer Batterie sind quasi Öffnungen dieser Behälter) miteinander, strömen die Elektronen, angezogen von den positiven Ladungen auf der anderen Seite, dem gegenüberliegenden Pol entgegen. Und zwar so lange, bis an beiden Polen die gleiche Ladung versammelt ist. Dann gibt es nichts mehr, was fliessen wollte, und die Batterie ist leer.

Wie man eine Batterie wieder auflädt

Einweg-Batterien sind so geschaffen, dass ihr Material endgültig „verbraucht“ ist, wenn die Ladungen an den beiden Polen erst einmal ausgeglichen sind. Sie müssen dann im Sondermüll entsorgt und aufwändig wiederverwertet werden. Deshalb waren wieder aufladbare Batterien von vorneherein erstrebenswert.

Solche müssen folglich aus Materialien bestehen, in welche man am negativen Pol neue Elektronen – aus einer Steckdose oder „frisch“ aus einem Generator – hinein stopfen kann, während man am positiven Pol Elektronen herauszieht. In den ersten Akkus enthielten solche Materialien Blei, in späteren Nickel – beides giftige Schwermetalle, deren Name zudem Programm ist (besonders Blei ist ja als Schwergewicht wohlbekannt).

Zudem war das Hineinstopfen von Elektronen in ein Material nicht eben einfach. Schliesslich stossen sich gleiche Ladungen ja gegenseitig ab, sodass viel Aufwand nötig ist, um viele davon eng gepackt in den gleichen Behälter zu pferchen.

Michael Stanley Whittinghams Idee

In den 1970er Jahren kam der Chemiker M. Stanley Whittingham auf die Idee, das Zusammenpferchen von Elektronen zu erleichtern, indem er positiv geladene Ionen in das eigentliche Material am Minuspol einwandern liess, die diese Elektronen entgegennehmen sollten.

Dazu bot sich Lithium, das leichteste aller Alkalimetalle (der Elemente ganz links im Periodensystem unterhalb vom Wasserstoff) geradezu an. Wie alle Alkalimetalle ist es nämlich nur zu gern bereit, die entgegengenommenen Elektronen wieder abzugeben, sobald sie gebraucht werden. Zudem sind seine Salze wasserlöslich und es besteht aus den leichtesten Metall-Atomen des Universums, sodass es leichte Batterien verspricht.

Redox-Chemie im Lithium-Ionen-Akku

Whittingham verwendete also Titandisulfid, TiS2, (auch das Metall Titan(ium) ist relativ leicht und vor allem ungiftig) als Elektrode am Pluspol, in welches Lithium-Ionen eingelagert waren. Beim Aufladen bewegte der Überschuss an positiver Ladung die Lithiumionen aus dem Material hinaus, sodass sie zum Minuspol, einem Stück Lithium-Metall, wandern konnten. Dort angekommen konnten sie ein in das Lithium gestopftes Elektron aufnehmen und sich als Metall-Atome zum übrigen Metall gesellen:


Vielleicht erinnert ihr euch noch daran: Eine Reaktion, bei der Elektronen aufgenommen werden, heisst Reduktion.

Zum Ausgleich werden am Pluspol Elektronen entfernt, sodass dort mehr positive Ladung verbleibt. Eine Reaktion wie diese, bei welcher Elektronen abgegeben werden, heisst übrigens Oxidation.


Wurde eine solche Lithiumbatterie über eine Ladevorrichtung mit einer Stromquelle verbunden, wurden also Elektronen aus Titandisulfid entnommen, während Lithium-Ionen von dort zur Lithium-Elektrode wanderten, um dort hineingestopfte Elektronen entgegen zu nehmen.

Nahm man dann die Stromquelle weg und verband die Pole stattdessen aussen herum mit einem Verbraucher (also ein Elektrogerät), gaben Lithium-Atome im Lithium-Metall ihre Elektronen wieder ab:

Die Lithium-Ionen wanderten zurück zum Titandisulfid, während die Elektronen durch den Verbraucher zurück zum Pluspol flossen und dabei das Gerät antrieben wie Wasser eine Mühle.

Wiederaufladbarkeit durch umkehrbare Reaktionen

Die Richtung der oben genannten Redox-Reaktionen wird nach dem Aufladen des Akkus bei seinem Gebrauch also einfach umgekehrt. Und sobald die Ladungen an den Polen ausgeglichen sind und der Akku damit „leer“ ist, wird die Reaktionsrichtung beim nächsten Aufladen erneut umgekehrt, und dann wieder und wieder.

Dieses Umkehren funktioniert viele Male, bevor es zu einem merklichen Verschleiss des Materials kommt. Nur: In Titandisulfid liessen sich zwar so einige Lithium-Ionen unterbringen, aber noch nicht genug, als dass die Batterien wirklich handlich gewesen wären.

Vom Plus- zum Minuspol gelangen die Lithiumionen übrigens durch einen Elektrolyten, also einen Stoff (flüssig oder fest), der Ionen (und damit eine Spielart des elektrischen Stroms) leiten kann. Der Elektrolyt verbindet Minus- und Pluspol miteinander, wobei eine nur teilweise passierbare Trennschicht („Separator“) dafür sorgt, dass das einen Kurzschluss gibt.

John Bannister Goodenough legt nach

Dem Physiker John B. Goodenough waren die Whittingham’schen Batterien deshalb nicht ‚gut genug‘. So forschte er weiter und entdeckte 1980, dass sich Lithiumcobaltoxid, LiCoO2, noch besser für den Pluspol eines Lithium-Ionen-Akkus eignet als Whittinghams Titandisulfid. Denn in das Ionengitter dieser Verbindung passen besonders viele Lithiumionen. Und diese können hinaus und hinein wandern, ohne dass das Gitter daran Schaden nimmt.

Damit liess sich eine doppelt so hohe Spannung in der neuen Batterie erzeugen wie mit der ursprünglichen Version von Whittingham!

Wenn Hitze zum Problem wird

Einen Haken hat das Material aber doch: Ab einer Temperatur von 180°C wird aus Lithiumcobaltoxid Sauerstoff freigesetzt. Und der ist als rücksichtsloser Elektronendieb (auf chemisch: starkes Oxidationsmittel) berüchtigt. So reagiert der freigesetzte Sauerstoff wild mit den Materialien des Akkus, der daraufhin lichterloh und unlöschbar abbrennt (Fachleute sagen: der Akku „geht thermisch durch“).

Das lässt sich aber relativ leicht verhindern, indem man dafür sorgt, dass der Lithium-Ionen-Akku nicht zu heiss wird.

Ein wesentlich grösseres Problem stellt dahingehend Lithium-Metall dar. Die Fähigkeit von Alkalimetallen wie Lithium, sehr leicht ein Elektron abzugeben (also oxidiert zu werden), die für die Lithiumbatterien so nützlich ist, führt nämlich auch dazu, dass diese Metalle sehr lebhaft mit allem Möglichen reagieren. Zum Beispiel mit Wasser.

So konnte schon ein wenig Feuchtigkeit dazu führen, dass die Whittingham’sche wie auch die Goodenough’sche Lithiumbatterie kaputt oder gar in Flammen aufging. Das war für eine Anwendung ausserhalb des Labors mit seinen Sicherheitsvorkehrungen natürlich nicht vertretbar.

Akira Yoshino liefert den (vorerst) letzten Schliff

Der Ingenieur Akria Yoshino fand 1985 schliesslich einen stabileren Ersatz für das impulsive Lithium-Metall am Minuspol: Er verwendete Petrolkoks, einen kohlenstoffreichen Abfall aus der Erdölverarbeitung, in welchen wiederum Lithiumionen (bzw. -atome) eingebettet werden. Eine Elektrode aus einem solchen Material tut ebenso ihren Dienst wie metallisches Lithium, geht aber nicht bei jeder Kleinigkeit in die Luft. Heutzutage wird stattdessen Graphit, also reiner Kohlenstoff, verwendet, der, anders als Petrolkoks, keine weiteren und giftigen Abfälle mehr enthält.

Skizze eines modernen Lithium-Ionen-Akkus mit Lithiumcobaltoxid: Beim Aufladen wandern Li+-Ionen aus dem Lithiumcobaltoxid (links) zum Graphit (rechts), um Elektronen, die über den Kupferdraht (Cu) hineingelangen, in Empfang zu nehmen. Beim Entladen gibt das Lithium im Graphit die Elektronen wieder ab und die Li+-Ionen wandern zurück ins Lithiumcobaltoxid. Die Elektrolytlösung besteht aus einem organischen Lösungsmittel mit darin gelösten Salzen, die für die Leitfähigkeit sorgen.
(by Cepheiden [CC BY-SA 2.0 de], via Wikimedia Commons )

Damit waren alle Zutaten zusammen, um einen für die Anwendung durch Otto Normalverbraucher sicheren Akku auf den Markt zu bringen. Der erste seiner Art kam dann auch 1991 in einer Videokamera der Firma Sony aus Yoshinos Heimatland Japan auf den Markt.

Sind Lithium-Ionen-Akkus wirklich sicher?

Immer wieder hört und liest man in den Medien von Lithium-Ionen-Akkus, die in Flammen aufgehen und Verletzungen oder grössere Brände verursachen. Dennoch sind solche Vorkommnisse Einzelfälle, die meist durch Beschädidungen der Batterien (durch die Sauerstoff in die Akkus gelangen kann) oder Baufehler (wie 2017 bei dem berüchtigten Samsung Galaxy Note 7) verursacht werden.

So könnt ihr verhindern, dass eure Lithium-Ionen-Akkus „durchgehen“

  • Verwendet nur das Ladegerät, das für euren Akku bzw. euer Elektrogerät vorgesehen ist! So verhindert ihr, dass zu viele Elektronen hineingestopft werden und der Akku deshalb überhitzt.
  • Zerlegt oder/und kombiniert Lithium-Ionen-Akkus niemals selbst! Eine intakte Umhüllung sorgt dafür, dass reaktionsfreudige Bestandteile des Akkus drinnen und Sauerstoff und Wasser draussen bleiben.
  • Haltet eure Akkus und Geräte sowohl von Feuer und Hitze über 60°C (Sonneneinstrahlung!) als auch von Frost fern. Beide Extreme können zu Beschädigungen führen!
  • Wenn ein Lithium-Ionen-Akku beschädigt oder verformt aussieht, benutzt ihn keinesfalls, sondern entsorgt ihn umgehend (als Sondermüll bzw. beim Hersteller oder Verkäufer des Geräts)! Ist der beschädigte Akku neu und habt ihr noch eine Garantie für das Gerät, bekommt ihr allenfalls kostenlos Ersatz dafür.

Und wenn euer Akku doch einmal kaputt ist oder gar brennt

  • Die Lithium-Ionen-Akkus unserer Elektrogeräte enthalten kein metallisches Lithium. Wasser facht einen Brand eines solchen also nicht an, sodass ihr ein Gerät mit brennendem Akku und seine Umgebung getrost mit Wasser kühlen könnt. CO2– oder Schaum-Feuerlöscher könnt ihr ebenfalls verwenden.
  • Löschen lässt sich ein durchgehender Lithium-Ionen-Akku aber nicht. Lasst ihn daher, wenn möglich, an einem feuerfesten Ort (und fern von eurem Körper) einfach ausbrennen.
  • Droht ein Brand ausser Kontrolle zu geraten, ruft umgehend die Feuerwehr zur Hilfe (118 in der Schweiz, 112 in Deutschland und Österreich)!
  • Sollte Flüssigkeit aus einem beschädigten Akku auslaufen, lasst sie nicht an eure Haut gelangen: Die Elektrolytflüssigkeit aus solchen Akkus kann mit Wasser zu äusserst giftiger Flusssäure reagieren! Fasst auslaufende Akkus nur mit Schutzhandschuhen und kürzestmöglich (die Handschuhe danach sofort ausziehen und entsorgen!) an, umwickelt sie mit mehreren Lagen Plastik oder bringt sie am besten noch im zugehörigen Gerät umgehend zur Sondermüllentsorgung!

Die Zukunft der wiederaufladbaren Batterien

Mit den bestehenden Schwachstellen sind die heutigen Lithium-Ionen-Akkus besonders einem ihrer Mit-Erfinder noch immer nicht ‚gut genug‘: Mittlerweile 97 Jahre alt (und damit der älteste Empfänger eines Nobelpreises aller Zeiten!) und kein Bisschen müde forscht John B. Goodenough bis heute an Neuerungen für wiederaufladbare Batterien.

Dabei zielen seine Neuentwicklungen darauf ab, das im Universum und damit auch auf der Erde relativ seltene Lithium durch seinen sehr viel häufigeren Bruder Natrium (dessen Ionen z.B. Bestandteil von Kochsalz sind) zu ersetzen.

Silber putzen leicht gemacht!

Die Weihnachtszeit ist auch die Zeit von Festtagsmenu und fein herausgeputzter Tafel. Aber gerade wer die eher selten eindeckt, steht mitunter vor einem ungeliebten Haufen Arbeit: Das Tafelsilber ist schon wieder angelaufen – und auch der Silberschmuck zum Festtagsoutfit glänzt nicht mehr. Also ist Putzen und Polieren angesagt…es sei denn, man versteht ein wenig von Chemie.

Dieser Beitrag ist Teil des Adventskränzchens 2019!
Weitere Beiträge zum Thema des Tages „Fein herausgeputzt“ findet ihr auf
www.marie-theres-schindler.de
http://cosmic-blue.jimdofree.com
https://das-leben-ist-schoen.net

Warum läuft Silber an?

Landläufig kennt man Silber eigentlich als Edelmetall – also als eines jener Metalle, die als so reaktionsträge gelten, dass sie auch an der Luft mehr oder weniger blank bleiben. „Reaktionsträge“ meint dabei „schwer bis gar nicht zu oxidieren“. Und für das Oxidieren an der Luft ist in der Regel der darin enthaltene Sauerstoff verantwortlich. Der kann dem Silber aber gar nichts, wenn er alleine ist. Anders sieht es aber aus, wenn der Sauerstoff Unterstützung durch seinen grossen Bruder hat: Den Schwefel.

Schwefel: Der anrüchige Bruder des Sauerstoffs

Der steht im Periodensystem der Elemente direkt unter dem Sauerstoff, was bedeutet, dass Schwefel und Sauerstoff chemisch miteinander eng verwandt sind. So gibt es Schwefel auch in Form von S2--Ionen, analog zu den Sauerstoff-Anionen O2-. Und diese S2- -Ionen kommen zum Beispiel im Schwefelwasserstoff, H2S, einem äusserst übelriechenden Gas, oder in organischen Verbindungen, den sogenannten Thiolen, vor. „Thio-“ ist altgriechisch für Schwefel und die Endung „-ol“ weist auf die chemische Verwandschaft hin: Thiole sind die schwefelhaltigen Geschwister der Alkohole.

Ebenso haben auch die Aldehyde und Ketone (Sauerstoffverbindungen, die entstehen, wenn man Alkohole oxidiert – darunter Acetaldehyd, das uns nach Alkoholgenuss den Kater beschert) schwefelhaltige Geschwister.

All diese organischen Schwefelverbindungen sind oft ziemlich üble Stinker, und das nicht von ungefähr: Wie Schwefelwasserstoff sind einige Thiole hochgiftig, sodass der Gestank uns Menschen aus gutem Grund dazu bewegt, vor ihnen wegzulaufen. Andere Verbindungen werden von Pflanzen verwendet, um ihre Fressfeinde abzuschrecken. Ein bekanntes Beispiel dafür sind Zwiebeln. Der Stoff, der uns beim Schneiden von Zwiebeln Tränen in die Augen treibt, um uns vom Zerstören der Knollen abzuhalten, gehört auch zur Grossfamilie der schwefelorganischen Verbindungen.

Wie Schwefel an das Silber kommt

Tatsächlich kann man Thiole und andere schwefelorganische Verbindungen – und damit auch Schwefelwasserstoff in kleinen Mengen – überall dort finden, wo Leben ist oder war. Zum Beispiel in Lebensmitteln, auf unserer Haut oder auch in Kosmetika. So ist es nur natürlich, dass unser Tafelsilber und Silberschmuck, wenn wir sie benutzen, nebst Sauerstoff auch mit S2--Ionen in Berührung kommt.

Und die bilden mit Silberionen, Ag+, ein schwarzes, wasserunlösliches Salz, das Silbersulfid Ag2S:

2Ag+ + S2- –> Ag2S

Dabei wird eine Menge Energie frei. Das bedeutet, dem fertigen Silbersulfid wohnt viel weniger Energie inne als dem Silber-Metall und den S2--Ionen. Und Zustände mit möglichst wenig Energie strebt die bequeme Natur stets an. Der Zustand als Silbersulfid ist sogar dermassen erstrebenswert, dass Luftsauerstoff aus Silber-Metall Silber-Ionen machen kann (das geht normalerweise nicht von selbst), wenn S2- zur Stelle ist, um mit letzteren Silbersulfid zu bilden. Und zwar direkt an der Oberfläche des Silber-Metalls, wo die Ag+-Ionen entstehen. So bleibt das wasserunlösliche Silbersulfid gleich dort und bildet die dunkle Patina, die Silber so häufig überzieht.

Wie wird man die Silbersulfid-Schicht wieder los?

Grundsätzlich gibt es zwei Wege, die schwarze Schicht von der Silberoberfläche zu bekommen:

  • Man schrubbt oder löst sie ab – dann ist das Silber darin aber verloren.
  • Man macht aus den Silberionen darin wieder metallisches Silber und setzt die Sulfid-Ionen frei.

Ich ziehe den zweiten Weg dem ersten vor, um möglichst viel Silber an meinen Gegenständen zu erhalten. Und dazu gibt es neben kommerziellen Reinigungsmitteln verschiedenste Hausmittel im Netz. Besonders interessant – weil so einfach und wirksam, finde ich dieses:

Silber mit Aluminiumfolie in Salzwasser reinigen

Ihr braucht dazu

  • euer angelaufenes Silber (Besteck, Tafelsilber oder Schmuck ohne Steine oder sonstiges Beiwerk!)
  • Aluminiumfolie
  • etwas Kochsalz
  • Leitungswasser
  • Kochtopf und Herd
  • einen gut belüfteten Raum bzw. eine Dunstabzugshaube zum Herd
  • eine Grillzange oder ein ähnliches Greifwerkzeug
Was ihr zum Silber putzen braucht: Silber, Kochsalz, Alufolie, Kochtopf
Ich habe für meinen Testlauf ein Schmuckstück aus 925er Silber verwendet (unten im Bild). Das bedeutet, 925 von 1000 Teilen oder 92,5% des Metalls sind Silber, der Rest besteht aus anderen Metallen – in der Regel Kupfer. In solch einer Legierung ist das Silber etwas härter als in ganz reiner Form. Silberbesteck besteht übrigens meistens aus 80% Silber und 20% Kupfer und ist damit noch härter. Doch so lange das Besteck nicht grün angelaufen ist, funktioniert dieser Trick auch damit.

So geht’s

  • Füllt Wasser in den Topf (es soll eure Silbergegenstände später ganz bedecken) und gebt einen Löffel Kochsalz hinzu (als wolltet ihr z.B. Spaghetti kochen)
  • Bringt das Wasser auf dem Herd zum Kochen
  • Zerteilt inzwischen die Aluminiumfolie in kleine Schnipsel und gebt sie in das kochende Wasser. Die Schnipsel sollten ganz ins Wasser eingetaucht sein – hierzu ist die Grillzange sehr nützlich!
  • Legt den Silbergegenstand in das kochende Wasser, lasst das Ganze kurz aufkochen und nehmt das Silber mit der Zange wieder heraus (Vorsicht, heiss!). Wenn ihr das ganze Tafelsilber säubern wollt, wiederholt diesen Schritt einfach mit den nächsten Teilen.
  • Lasst das Metall kurz abkühlen und trocknet es gründlich ab
Silber und Alufolie im Kochtopf
Kaum zu sehen: Das Silber liegt auf dem Grund des Salzwassers mit Aluminium-Schnipseln.

Was ihr beobachten könnt

Das Silber wird innerhalb einer Minute oder weniger wieder hell und glänzend. Der aufsteigende Wasserdampf riecht währenddessen ein wenig nach faulen Eiern – deshalb grössere Mengen nicht einatmen, gut lüften oder den Abzug verwenden!

Vorsicht, heiss: Gerade aus dem Topf gehoben glänzt das Silber blitzblank!
Vorsicht, heiss: Gerade aus dem Topf gehoben glänzt das Silber blitzblank!

Was passiert da?

Aluminium ist ein sehr unedles Metall. Es wird also leicht oxidiert. Oxidation bedeutet: Das Aluminium gibt Elektronen an einen Reaktionspartner ab:

Ein möglicher Reaktionspartner, der freiwillig Elektronen von Aluminium entgegennimmt (die Aufnahme von Elektronen eines Reaktionspartners heisst Reduktion), sind Silberionen, Ag+:

Links: Das Schmuckstück vor dem Kochen mit deutlich sichtbarer Silbersulfid-Schicht.
Rechts: Nach dem Kochen, Abkühlen und Trocknen glänzt das Silber wieder hell.

Euch kommt das irgendwie bekannt vor? Richtig: Aluminiumfolie als Rostfänger in der Spülmaschine funktioniert ganz ähnlich! Mit dem Unterschied, dass das Aluminium dort der Entstehung von Flugrost (d.h. Eisen-Ionen) zuvorkommt, weil es leichter als Eisen oxidiert wird.

Für die Reduktion von Silbersulfid müssen die Elektronen aber irgendwie vom Aluminium in der Folie zum Silbersulfid an der Oberfläche unseres Tafelsilbers gelangen. Und Elektronen, die auf Wanderschaft gehen, sind elektrischer Strom.

Elektronentransport dank Elektrolytlösung

Hier kommt das Kochsalz, NaCl, ins Spiel. Gibt man es ins Wasser, löst es sich nämlich in Na+– und Cl-Ionen auf. Und Ionen, die sich in einer Flüssigkeit bewegen können, leiten den elektrischen Strom! Anders als in einem Kabel, durch welches Elektronen einfach hindurchströmen, wandern positiv geladene Ionen (Kationen) hierzu durch die Flüssigkeit dorthin, wo es viele Elektronen gibt (zur „Kathode“), um dort Elektronen (hier vom Aluminium) „huckepack“ zu nehmen, während die negativen Ionen (Anionen) dorthin wandern, wo wenig Elektronen sind (zur „Anode“), um dort Elektronen abzugeben (hier an die Silberionen). Eine solche leitfähige Flüssigkeit nennen die Chemiker „Elektrolyt“.

Ebenso wie Kochsalz funktionieren natürlich auch andere wasserlösliche Salze als Bestandteil der Elektrolytlösung zum Silberputzen. Natron, Soda oder Backpulver werden gerne als Alternativen genannt. Diese reagieren allerdings basisch und bilden mit vielen Metallen – auch Aluminium – schwer lösliche Hydroxide. Und die könnten die Oberfläche der Aluminiumfolie für die Redox-Reaktion mit dem Silber blockieren („passivieren“). Deshalb – und weil Basen die Haut eher reizen als neutrale Stoffe oder Säuren – finde ich Kochsalz als Elektrolyt einfach bequemer.

Da auf diese Weise sehr bequemes Silbersulfid zerstört werden soll, braucht es zusätzlich noch Energie, damit das Ganze funktioniert. Und die fügen wir durch das Erhitzen zu.

Und woher kommt der Geruch nach faulen Eiern?

Wenn die Ag+-Ionen zu metallischem Silber reagieren, bleiben die S2--Ionen übrig:

Die bleiben aber ungern nackt und einsam, sodass sie sich sofort von den nächstbesten Wassermolekülen H+-Ionen schnappen:

Also insgesamt:

Das Gas H2S, also Schwefelwasserstoff, ist giftig, wasserlöslich, verdampft aber leicht – ganz besonders, wenn die Lösung gerade kocht. Deshalb können wir es im Wasserdampf, der aus unserem Topf mit dem Silber aufsteigt, riechen. Aber keine Sorge: Gerade weil dieses Gas so giftig ist, ist die menschliche Nase darauf äusserst empfindlich. Bevor wir gesundheitsschädliche Mengen davon einatmen können, sind wir in aller Regel längst vor dem Gestank davongelaufen.

Trotzdem solltet ihr euren Raum, in dem ihr Silber auf diese Weise putzt, gut lüften oder die Dunstabzugshaube einschalten, damit sich das Gas nicht sammelt – und damit nicht eure ganze Wohnung danach stinkt 😉 .

Was passiert, wenn man viel Silber reinigt?

Wenn ihr viel Silber reinigt, könnte es auch mit Kochsalz als Elektrolyt passieren, dass eure Alufolienschnipsel stumpf werden. Denn dank der frei werdenden S2--Ionen kommt ihr letztlich um die Entstehung von Hydroxiden (Verbindungen mit OH-Ionen) nicht herum. So lassen sich alle Gleichungen oben zu einer einzigen Reaktionsgleichung zusammenfassen:

Sollte sich das Aluminiumhydroxid Al(OH)3 an der Oberfläche der Alufolie sammeln, bis das Reinigen des Silbers nicht mehr funktioniert, tauscht die Folienschnipsel einfach gegen frische Schnipsel aus. Zudem könnt ihr die Haltbarkeit der Folienschnipsel etwas verlängern, indem ihr ein wenig Säure, zum Beispiel Zitronensäure, zur Salzlösung gebt.

Wenn ihr euch gut mit Chemie auskennt, könntet ihr natürlich eine Pufferlösung einzusetzen, um die Alufolie noch deutlich länger „frisch“ zu halten. Aber das ist eine andere Geschichte.


Entsorgung

Da bei diesem Verfahren Silberionen an der Silberoberfläche zu metallischem Silber reduziert werden, sollte eure Salzlösung nach dem Kochen praktisch kein Silber enthalten. Das Aluminium reagiert ebenfalls zu schwer löslichen Salzen (spätestens dann, wenn ihr die gebrauchte Lösung mit etwas Natron basisch macht).

Wenn die, nachdem ihr viel Silber gereinigt habt, als sichtbare Schlieren oder Trübung aus der Lösung ausfallen, könnt ihr die Flüssigkeit filtrieren, das Filterpapier (z.B. einen Kaffeefilter) trocknen lassen und in den Hausmüll geben.

So könnt ihr die verbleibende Salzlösung nach dem Abkühlen – und nachdem ihr die Folienschnipsel herausgenommen habt, in den Ausguss entsorgen.

Die Folienschnipsel könnt ihr wie anderes Haushalts-Aluminium auch in den Recycling-Abfall geben (in der Schweiz in den Container an der Abfall-Sammelstelle, in Deutschland und Österreich über die gelbe Tonne).

Wenn ihr ausserdem Kupfer oder Messing putzen möchtet: Auch dafür gibt es einen einfachen Chemie-Trick – den findet ihr hier!

Und wie putzt ihr euer Silber für gewöhnlich?

Hast du das Experiment nachgemacht:

[poll id=“5″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Guter Duft in reiner Luft? Wie Lufterfrischer funktionieren

Wer kennt sie nicht, die Lufterfrischer in der Fernsehwerbung? In welcher Zaubermittel aus Sprühflaschen kommen und unangenehme Gerüche ganz einfach einhüllen und verschwinden lassen? ‚Ganz einfach‘, wie die Dinge in der Werbung nun mal sind. Und neu jetzt auch die Duftkerze oder -lampe von der gleichen Firma, um den lästigen Geruch auch gleich durch ein angenehmes, zum Beispeil weihnachtliches Aroma zu ersetzen…

Dieser Beitrag ist Teil des Adventskränzchen 2019!
Das Tagesthema ist „so duftet Weihnacht“ – hier mit meiner Erweiterung „…auch weihnachtlich“.
Weitere Beiträge zum Tagesthema findet ihr auf:
www.marie-theres-schindler.de
http://cosmic-blue.jimdofree.com
https://www.wanderingmind.de
www.diekunstdesbackens.com
https://allthewonderfulthings.de/
https://das-leben-ist-schoen.net

Grundsätzlich bin ich Werbeversprechen gegenüber ja erstmal skeptisch..besonders wenn es darin um chemische Vorgänge geht, die meinem Chemiker-Alltagsempfinden zu widersprechen scheinen. Zum Beispiel Moleküle, die einfach so verschwinden sollen. Aber ein näherer Blick hat mir offenbart: Mit einem tiefen Griff in ihre Trickkiste haben Chemiker auch das wirklich hinbekommen! Nun ja, mit gewissen Einschränkungen – die Naturgesetze wollen schliesslich geachtet werden.

Heute möchte ich euch zeigen: Wie funktionieren eigentlich Lufterfrischer? Welche verschiedenen Produktgruppen für eine angenehme Raumluft gibt es? Was taugen die tatsächlich? Können sie uns vielleicht sogar schaden? Und wie funktionieren die gängigen Hausmittel?

Was sind eigentlich Gerüche?

Gerüche sind Moleküle, die an die Geruchszellen in unserer Nase binden und diese dazu bewegen können, einen elektrischen Impuls an das Gehirn zu schicken. Letzteres verarbeitet dieses Signal dann zu einer Geruchswahrnehmung und gleicht sie mit seinen Geruchserinnerungen ab. Kennen wir dieses Molekül, oder ist es uns neu?

Dabei benötigt jede Molekülsorte ihre ganz eigene Andockstelle, um von uns gerochen werden zu können. Wenn ein Stoff geruchlos ist, heisst das also nur, dass wir keine passenden Geruchssensoren für seine Moleküle haben.

Der Geruchssinn ist also ein perfektes Beispiel dafür, dass unser Leben ‚ohne Chemie‘ unvorstellbar ist. Sobald wir etwas riechen, ist da Chemie am Werk – ob es nun zarter Rosenduft oder der scharfe Toilettenreiniger ist.

Dabei ist diese Chemie uns äusserst nützlich: Ein Geruch, der von Menschen generell als unangenehm empfunden wird, weist häufig auf eine Gefahr hin. So ist entweder der stinkende Stoff selbst giftig, oder seine Erzeuger – namentlich Mikroben – können uns möglicherweise gefährlich werden. Der Impuls, vor Gestank davon zu laufen, lässt uns also Abstand von Gefahrenquellen halten.

Erfahrungen versus Instinkte

Zusätzlich zum instinktiven Riecher für Gefahren verbinden wir jedoch auch Erfahrungen mit Gerüchen. Und die können durchaus dem Instinkt entgegen gerichtet sein. In meiner – im positiven Sinne – aufregenden Zeit im anorganischen Praktikum hatten wir im Labor viel mit Schwefelwasserstoff (H2S), einem hochgiftigen Gas, das schon in kleinsten Mengen nach faulen Eiern stinkt, zu tun.

Seit dieser Zeit empfinde ich den unverfälschten Geruch kleinerer Mengen Schwefelwasserstoff nicht mehr als Gestank – weil ich damit erfreuliche Erfahrungen verbinde. Allerdings haben wir im Labor auch gelernt, dass Schwefelwasserstoff giftig ist, sodass ich bewusst das Weite suche, wenn mir sein Geruch begegnet.

Umgekehrt habe ich von Leuten gehört, die Lavendelaroma – für den Menschen in der Regel harmlos und von vielen als sehr angenehm empfunden – mit dem Wäscheschrank der strengen alten Tante verbinden und so bei der Begegnung mit Lavendelduft von Fluchtimpulsen geplagt werden.

Wie kann man gegen unangenehme Gerüche vorgehen?

Die beste Waffe gegen Gerüche in Räumen ist in meinen Augen: Geruchsquelle beseitigen, dann kurz und kräftig lüften.

Nur ist das Beseitigen mancher Geruchsquellen leider gar nicht so einfach. Deshalb haben findige Chemiker und Ingenieure eine ganze Reihe weiterer Helferlein zur Geruchsbekämpfung ersonnen.

Da Gerüche Eigenschaften von Molekülen sind, die wir mit der Luft einatmen, haben wir eine Vielzahl von Produkten entwickelt, um mit „stinkigen“ Molekülen in unserer Raumluft fertig zu werden. Grundsätzlich lassen sich diese Helfer aber in vier grosse Gruppen einteilen.

So kann man gegen Gerüche vorgehen, indem

– man Unangenehmes mit Angenehmem überdeckt

Sogenannte Lufterfrischer geben Moleküle an die Luft ab, die wir als angenehm empfinden. So soll unsere Nase beschäftigt und von bestenfalls weniger häufig vertretenen unangenehmen Molekülen abgelenkt werden.

Zu den Lufterfrischern zählen Duftkerzen, Duftspray (z.B. von der Marke „Brise“), Parfums, Weihrauch, ätherische Öle und viele andere Produkte.

Nachteile von Lufterfrischern

Lufterfrischer beseitigen unangenehme Gerüche und ihre Ursachen nicht. Eine mögliche Gefahrenquelle bleibt also erhalten.

Zudem macht uns unser Gehirn bei dieser Methode zuweilen einen Strich durch die Rechnung. Empfängt es nämlich über längere Zeit (das heisst wenige Minuten!) einen gleichbleibenden Geruchsimpuls von der Nase, blendet es diesen bis zur nächsten Veränderung als unwichtig aus. Unabhängig davon, ob wir ihn als Duft oder Gestank wahrnehmen. Im ungünstigen Fall blendet das Gehirn so den Duft der gleichmässig brennenden Aromalampe aus, während der Gestank, den sie überdecken sollte, sich durch Luftbewegungen immer wieder leicht verändert.

Es sind also über längere Zeit hinweg grössere – möglichst leicht schwankende – Dosen Lufterfrischer nötig, um gegen unangenehme Gerüche anzukommen. Das erscheint mir auch deshalb bedenklich, weil praktisch jeder Duftstoff das Potential hat, Allergien auszulösen (Stoffgemische wie ätherische Öle enthalten besonders viele Kandidaten dafür!).

Bei Duftsprays kommt hinzu, dass darin meist Propan und/oder Butan („Campinggas“) als Treibgase enthalten sind. Diese Gase gehören zu den leichtesten Vertretern der Erdöl-Bestandteile (weshalb sie gasförmig und daher letztlich dem Erdgas zuzuordnen sind). Die sind zwar wesentlich unkritischer als die berüchtigten FCKW (FluorChlorKohlenWasserstoffe), aber nichts desto trotz wirksamere Treibhausgase als CO2. Offiziell als solche gelistet, sind sie zwar nicht, weil sie in der Atmosphäre zu selten sind und mit Methan in Sachen Wirksamkeit nicht konkurrieren können, aber das ist in meinen Augen kein Grund, sie unkritisch in die Luft zu sprühen.

Was ihr bei der Anwendung von Lufterfrischern beachten solltet

Persönlich halte ich von der Überdeckung von Gerüchen am wenigsten, weil sie so wenig effizient und mit erheblichen Nachteilen behaftet ist. Wenn ihr trotzdem nicht darauf verzichten oder einfach einen gut gelüfteten Raum mit Duft „dekorieren“ möchtet:

  • Klärt vorher ab, dass keiner der Bewohner (oder ggfs. auch regelmässigen Besucher) des Haushalts allergisch auf einen der Bestandteile eures Wunschduftes reagiert oder eine schlechte Erfahrung damit verbindet. Vergesst dabei auch eure Haustiere nicht!
  • Falls eine allergische Reaktion erst beim Ausprobieren des Lufterfrischers auftritt, seid bereit, das Produkt zu wechseln oder bestenfalls ganz darauf zu verzichten.

– man unangenehm riechende Moleküle einfängt („neutralisiert“)

Sogenannte Duftneutralisierer werden in den Werbespots, die mich so skeptisch reagieren liessen, beworben. Solche Produkte enthalten häufig Cyclodextrine (z.B. die der Marke „Febreze“) oder auch Triethylenglykol (TEG). Und diese Stoffe stammen tief aus der Trickkiste der Chemiker.

Strukturformel von beta-Cyclodextrin: 7 Traubenzucker-(Glucose-)ringe sind zu einem grossen Ring verbunden (Stanisław Skowron [CC BY-SA 3.0], via Wikimedia Commons)

Cyclodextrine sind Ringe aus aneinander gebundenen Traubenzucker-Molekülen (Wenn man Traubenzucker-Moleküle zu langen offenen Ketten verbindet, ist das Ergebnis Stärke. Wenn man Stärke in kurze Stücke schneidet und die zu Ringen schliesst, erhält man ein Cyclodextrine). Die Innenseite dieser Ringe lässt sich mit Fetten, aber nicht mit Wasser mischen. Bei der Aussenseite verhält es sich genau umgekehrt. Die lässt sich mit Wasser mischen, aber nicht mit Fetten.

beta-Cyclodextrin als Kalottenmodell
Kalottenmodell von beta-Cyclodextrin: weisse Halbkugeln (H-Atome) bilden fettliebende Flächen, rote Halbkugeln (O-Atome) dazwischen stehen für wasserliebende Bereiche. Die Innenfläche des Rings ist weiss, also fettliebend, während die roten Bereiche aussen liegen und den Ring als Ganzes mit Wasser mischbar machen.

So sind Cyclodextrine einerseits wasserlöslich, bieten in ihrem Inneren andererseits ein lauschiges Plätzchen für fettliebende Moleküle. Zu diesen gehören viele aromatische Verbindungen. Diese Verbindungsklasse, die sich durch eine gemeinsame Besonderheit ihrer Moleküle auszeichnet (meistens ist darin mindestens ein „Benzolring“ zu finden), erhielt ihren Namen, weil ihre Vertreter in der Regel riechen – eben aromatisch sind.

Wenn diese Aromaten und andere anrüchige Fettliebhaber sich in ein Cyclodextrin verirren, bleiben sie leicht darin hängen. Und von einem Cyclodextrin-Ring umgeben können die Stinker nicht mehr an unsere Geruchszellen andocken. So können wir sie nicht mehr riechen.

Vorteile von Duftneutralisieren gegenüber reinen Lufterfrischern

Die riechenden Moleküle werden tatsächlich „kaltgestellt“, d.h. sie sind für uns nicht mehr wahrnehmbar. So kann uns auch das Gehirn keinen Strich durch die Rechnung machen. Cyclodextrine gelten zudem als ungiftig, nicht zuletzt, da wir sie im Gegensatz zu Stärke nicht verdauen können (beta-Cyclodextrin, ein Ring aus 7 Glucosemolekülen, ist sogar als Lebensmittelzusatzstoff unter der Nummer E 459 zugelassen). Auch beim Einatmen gelten unveränderte Cyclodextrine als unbedenklich.

Nachteile von Duftneutralisierern

Duftneutralisierer funktionieren nur bei fettliebenden Geruchsmolekülen. Wasserlösliche Moleküle können damit nicht eingefangen werden.

Die Geruchsmoleküle in der Luft und an Oberflächen werden zwar „unriechbar“, bleiben aber vorhanden. Die Luft wird also nicht wirklich „sauberer“. Durch gründliches Lüften nach der Anwendung lassen sich die Geruchs-Cyclodextrin-Verbindungen aber ebenso aus der Wohnung schaffen wie alle anderen Moleküle.

Neben den unbedenklichen Cyclodextrinen sind in Industrieprodukten stets eine Reihe weiterer, unter Umständen weniger harmlose Stoffe enthalten: Lösungsmittel, Konservierungsstoffe, Parfum,… Die atmen wir auch mit ein oder bekommen sie auf die Haut (wenn wir behandelte Textilien benutzen). Auch mit Oberflächen können diese Stoffe in mitunter überraschender Weise reagieren, zeigt nicht zuletzt ein schon etwas länger zurückliegende Testbericht der deutschen Stiftung Warentest.

Was ihr bei der Anwendung von Duftneutralisierern beachten solltet

Der Trick mit den „molekularen Zuckertüten“ für stinkige Moleküle scheint zu funktionieren. Dennoch bin ich persönlich als Reinstoff-Liebhaberin gerade mit Industrieprodukten, die zusätzlich Duftstoffe enthalten, sparsam und verwende keine Duftneutralisierer. Wenn ihr das aber tun möchtet:

  • Verwendet Textilauffrischer und andere Duftneutralisierer zum Sprühen möglichst in gut gelüfteten Bereichen. So könnt ihr die eingefangenen Stinker gleich nach draussen schaffen.
  • Testet vor der grossflächigen Verwendung an einem kleinen, wenig sichtbaren Bereich, ob eure Oberfläche der Behandlung standhält.
  • Behaltet im Auge, ob irgendeiner der Bewohner (oder regelmässigen Besucher) das Produkt womöglich nicht verträgt (und im schlimmsten Fall allergisch reagiert). Sollte das der Fall sein, verzichtet sofort darauf.

– man unangenehm riechende Stoffe biologisch abbauen lässt

Sogenannte Geruchskiller enthalten Mikroorganismen, meist Bakterien, die spezielle organische Geruchsquellen mit Hilfe ihrer Enzyme verdauen können. Übelriechende Stoffe werden von solchen Bakterien abgebaut und verstoffwechselt, sodass auch und vor allem die Ursache des Gestanks beseitigt werden kann! Und das überall dort, wohin eine Flüssigkeit einsickern kann – z.B. tief in Textilien und Polstern.

Nachteile von Geruchskillern

Von allen Mitteln sind diese am wenigsten universell einsetzbar. Vielmehr müssen die passenden Bakterien für die jeweilige Geruchsquelle gefunden werden. Für unsere Lieblingsfeinde in der Geruchswelt – zum Beispiel Tabakrauch oder Tierurin – gibt es spezielle Produkte im Fachhandel. Aber nicht alle Gerüche können auf diese Weise beseitigt werden.

Bakterien brauchen überdies Zeit zum Fressen und Verdauen. Beim Einsatz von Geruchskillern ist also Geduld gefragt. Dafür sollte am Ende die Geruchsquelle ganz verschwunden sein.

Auch biologische Geruchskiller mit Mikroben können Duft- und Konservierungsstoffe enthalten. Benutzt sie also genauso umsichtig wie andere Industrieprodukte auch.

Was ihr bei der Anwendung von Geruchskillern beachten solltet

Unter allen Produkten gegen schlechte Luft sind mir diese noch am sympathischsten, weil sie die Geruchsquelle sauber beseitigen können. Und die Bakterien darin sind erst noch ungefährlich für uns Menschen. Beachtet dennoch folgendes, wenn ihr sie verwenden möchtet:

  • Lasst eurem Geruchskiller Zeit, seine Wirkung zu tun. Das kann schnell einmal Tage dauern. Aber dann ist die Geruchsquelle auch wirklich weg.
  • Behaltet – wie bei allen anderen Industrieprodukten – allfällige allergische Reaktionen der Haushaltsmitglieder im Auge.

– man überlriechende Moleküle durch Luftionisierung in Bruchstücke zerlegt

Luft-Ionisatoren sind elektrische Geräte, die mit Hilfe von elektrischer Spannung Luftmoleküle in geladene Teilchen – Ionen – zerlegen. So entstehende Sauerstoff-Ionen reagieren weiter zu Ozon (O3), einem aggressiven Oxidationsmittel. Ozon greift viele andere Moleküle – auch die Stinker unter ihnen – leicht an und zersetzt sie.

Dazu kommt, dass die Ionen Staub-Partikel anziehen, sodass diese sich zu Clustern zusammenfinden und so leichter aus der Luft gefiltert werden können.

Ionisatoren gibt es heutzutage in allen Grössen und Leistungsleveln, vom Mini-Gerät für den Zigarettenanzünder oder USB-Port im Auto über handliche Tischgeräte bis hin zum Bestandteil von Raumluft-Aufbereitern industriellen Massstabs.

Vorteile von Luftionisierung

Ozon ist ein Gas aus sehr kleinen Molekülen, die sich leicht im Raum verteilen und sogar tief in Textilien eindringen können, um dort ihr Werk zu verrichten. So besteht zumindest die Chance, dass sie auch die Quelle eines Geruchs erreichen.

Nachteile der Ionisierung von Luft

Ozon in der Atemluft ist bekanntlich gesundheitsschädlich (so ist es nicht überraschend, dass es schon in sehr kleinen Mengen einen unangenehmen Eigengeruch hat). Zudem greift es seine Reaktionspartner ziemlich willkürlich an, sodass bei der Zersetzung von Geruchsstoffe eine unübersichtliche Palette neuer Stoffe entstehen kann. Besonders aus Tabakrauch können dabei laut der Deutschen Lungenstifung Stoffe entstehen, die gefährlicher als der ursprüngliche Rauch sein können!

Ausserdem verursachen elektrische Geräte laufend Energiekosten.

Was ihr bei der Anwendung von Ionisatoren beachten solltet

Obwohl sie das Übel mehr oder weniger an der Wurzel anfassen, also im besten Fall einen Geruch samt Ursache beseitigen können, sind die Erzeugnisse von Luftionisatoren nicht unbedingt gesund. Wenn ihr sie dennoch verwenden möchtet:

  • Setzt sie nicht zur Bekämpfung von Zigarettenrauch ein.
  • Verwendet sie, wenn möglich, in gerade nicht benutzen Räumen und lüftet danach gut. So werdet ihr auch die Zersetzungsprodukte und das Ozon los.
  • Grössere Luftaufbereitungsanlagen verbinden Ionisatoren häufig mit anderen Vorrichtungen wie Filtern, UV-Licht und mehr, sodass sie die Zersetzungsprodukte bestenfalls gleich beseitigen können.

– man übelriechende Moleküle und ihre Quellen „mechanisch“ wegschafft

Mein absoluter Favorit bei der Geruchsbekämpfung: Die Ursache finden und beseitigen (wegtragen, auswaschen, sauber machen,…) – und dann kräftig durchlüften.

Vorteile

Blosses Lüften (kurz und kräftig) und das effektive Beseitigen von Geruchsquellen ist meistens und gerade auf Dauer kostengünstig. Ausserdem werden weder zusätzliche Stoffe eingebracht (abgesehen von allfälligen Reinigungsmitteln bei der Ursachenbeseitigung) noch neue, unberechenbare Abbauprodukte erzeugt.

Nachteile

Erfordert Arbeit und unter Umständen etwas Beharrlichkeit, um die tatsächliche Geruchsquelle zu finden.

Und dann gibt es ja noch eine ganze Reihe von Hausmitteln zur Geruchsbekämpfung.

Wie und bei welchen Gerüchen funktionieren Hausmittel als Lufterfrischer?

  • Backpulver/Natron: sind basisch und reagieren mit sauren Geruchsstoffen (z.B. ranziges Fett, verdorbene Lebensmittel) zu weniger stinkigen Produkten
  • Kaffeepulver/Kochsalz: ziehen Feuchtigkeit aus der Luft, sodass sie Gerüche eindämmen, die bei hoher Luftfeuchtigkeit besonders gut tragen. Ausserdem manipuliert Kaffeepulver vermutlich in noch unerforschter Weise unsere Geruchswahrnehmung im Gehirn.
  • Essig: tötet Bakterien und Pilze. Essig beseitigt somit die Quellen von Gerüchen, die durch Mikroben verursacht werden (und die sind darin wirklich gut!). Der Eigengeruch überdeckt zudem andere Gerüche.
  • Zitronensäure: ist ein Reduktionsmittel („Antioxidans“). Zitronensäure kann übelriechende Moleküle möglicherweise zu weniger riechenden Molekülen reduzieren, ausserdem wird der Eigengeruch oft angenehmer wahrgenommen als der von Essig
  • Katzenstreu: Besteht oft aus Zeolithen oder anderen „porösen“ Stoffen, die wie die Cyclodextrine stinkige Moleküle (z.B. Katzenurin) in ihren Hohlräumen einfangen. Mehr über Zeolithe könnt ihr hier in Keinsteins Kiste nachlesen.

Fazit

Gerüche sind Eindrücke unseres Gehirns von der Beschaffenheit von Molekülen. Wenn solche Moleküle in unsere Nase finden und dort an einen passenden Geruchssensor binden, übersetzt dieser den Kontakt in einen elektrischen Impuls, den unser zu einer Geruchswahrnehmung interpretiert und mit seinen Erfahrungen verarbeitet.

Ein Geruch, den wir Menschen allgemein als unangenehm wahrnehmen, ist nicht selten eine Warnung vor einer möglichen Gefahr. Darüber hinaus können fiese Gerüche in unserem Alltag schnell sehr lästig werden.

Die beste Waffe gegen unliebsame Gerüche ist und bleibt das Entfernen der Geruchsquelle, gefolgt von kräftigem Durchlüften. Beim Entfernen einiger Geruchsquellen aus schwer zugänglichen Bereichen wie Polstern können biologische Geruchskiller helfen, brauchen aber Zeit.

Schnelle Abhilfe können Geruchsneutralisierer schaffen, wie sie in bekannten Textilerfrischern zum Aufsprühen enthalten sind.

Für am wenigsten zielführend halte ich Lufterfrischer, die andere Gerüche nur überdecken sollen. Solche beseitigen weder die Geruchsursache noch machen sie die Luft in irgendeiner Weise „sauberer“ – eher ist das Gegenteil der Fall.

Während ich beim Durchlüften bleibe…wie geht ihr eigentlich gegen lästige Gerüche vor?