1 Grill und 8 Typen der chemischen Reaktion – Teil 1: Fünf wichtigste Reaktionen
Was ist eine chemische Reaktion?
Woran erkennen wir, dass ein Vorgang in unserem Alltag eine chemische Reaktion ist (oder nicht ist)?
Wie viele und welche Reaktionstypen gibt es?
Ein Lehrbuch für Chemie am Gymnasium [1] sagt:
„Eine chemische Reaktion ist eine Stoffumwandlung. Aus den Ausgangstoffen (Edukte) bilden sich neue Stoffe (Produkte), die andere Eigenschaften haben als die Ausgangsstoffe.“
Das Erkennungsmerkmal schlechthin für eine chemische Reaktion ist also: Es entsteht dabei mindestens ein neuer Stoff. Und der hat eine ganz andere Erscheinung als der oder die Ausgangstoff/e: Er sieht anders aus, riecht anders, verhält sich anders.
Wie kommt das?
Alle Stoffe bestehen aus kleinen Teilchen. Das können Moleküle, Ionen oder Radikale sein – aber sie alle sind aus Atomen aufgebaut (genauer gesagt aus mindestens einem Atom: Elektrisch geladene Atome sind ebenso Ionen wie elektrisch geladene Moleküle).
Bei einer chemischen Reaktion treffen die Teilchen der Ausgangsstoffe aufeinander, und ihre Atome werden zu neuen Teilchen umgruppiert. Da die Eigenschaften eines Stoffes vom Aufbau seiner Teilchen bestimmt werden, hat der neue Stoff, der aus den neuen Teilchen besteht, neue Eigenschaften.
Atome können zu endlos vielen verschiedenen Teilchen gruppiert werden. Entsprechend gibt es nahezu endlos viele Arten von Reaktionen, die auf verschiedene Weise geordnet werden können. Die folgenden 8 Reaktionstypen sollte jedoch jeder kennen, der sich mit der Chemie unserer Welt beschäftigen möchte.
5 grundlegende Reaktionstypen auf einer Grillparty
Chemische Reaktionen begegnen uns im Leben ständig. Auf einer sommerlichen Grillparty bin ich kürzlich 7 der 8 wichtigsten Reaktionstypen begegnet. Nur eine fand, wie sich herausstellte, dort nicht statt. Zum Glück.
Zunächst aber zu den 5 Reaktionstypen, die in allen Bereichen der Chemie grundlegend sind.
1. Redox-Reaktion: Das Geheimnis des Grillfeuers
Holzkohle aufschütten, anzünden, geduldig warten. Für jede Grillparty braucht man einen heissen Grill. Nachdem wir lang genug gewartet haben, stellen wir fest: Der Kohlehaufen im Grill wird immer kleiner, die Kohlen werden weisslich und zerfallen. Indessen lamentiert Lilli, unser Umweltengel, eifrig über all die Treibhausgase, die wir da ausstossen.
Richtig: Hier findet eine chemische Reaktion statt. Die Holzkohlen, die grossteils aus dem Element Kohlenstoff, C , bestehen, reagieren mit dem Sauerstoff, O2 , in der Luft zu dem Gas Kohlenstoffdioxid (oder Kohlendioxid), CO2. Und das ist Lilli als Treibhausgas ein Dorn im Auge.
Dabei tauschen die Reaktionspartner zunächst Elektronen, die winzigen Bausteine der Atomhülle, aus. Eine Redox-Reaktion ist eine Elektronen-Austausch-Reaktion. Deshalb besteht eine Redox-Reaktion eigentlich aus zwei Reaktionen, die immer als Paar stattfinden:
Kohlenstoffatome geben Elektronen ab (Oxidation), Sauerstoffatome nehmen diese Elektronen auf (Reduktion). Schliesslich werden die Atome mitsamt den ausgetauschten Elektronen zu dem neuen Molekül CO2 umgruppiert. Dabei wird eine grosse Menge Energie, die zuvor in den Molekülen der Ausgangsstoffe steckte, freigesetzt. Diese Energie macht sich als Wärme bemerkbar und brät unsere Steaks und Würstchen. Praktisch.
2. Säure-Base-Reaktion: Linderung für den geplagten Magen
Die ersten Steaks liegen auf dem Rost und es duftet verführerisch. Uns allen läuft das Wasser im Munde zusammen. Einzig Reto verzieht das Gesicht. „Da bekomme ich ja schon Sodbrennen, wenn ich nur dran denke!“. Zu viel Magensäure? Zum Glück hat Reto seine Notfalltabletten dabei. Die enthalten vor allem Calciumcarbonat, CaCO3, welches mit der Salzsäure im Magensaft reagiert:
Die entstehende Kohlensäure, H2CO3 , ist, anders als Salzsäure, eine sehr schwache Säure und brennt nicht in Retos Speiseröhre. Diese praktische Reaktion heisst Neutralisation und ist nur eine von vielen Säure-Base-Reaktionen. Wie bei allen Säure-Base-Reaktionen werden bei der Neutralisation Protonen, also Wasserstoff-Atomkerne, ausgetauscht. Eine Säure-Base-Reaktion ist eine Protonen-Austauschreaktion.
3. Zerfalls-Reaktion: Nicht alles ist stabil
Kaum ist das erste Steak mitsamt Notfall-Tablette verdrückt, hat Reto schon Druck auf dem Magen. Mit einem kräftigen Rülpser macht er sich Luft und erntet die missbilligenden Blicke der anderen. Was ist denn nun schon wieder los?
Manche Atomgruppierungen halten einfach nicht gut zusammen. Das Kohlensäure-Molekül ist eine davon. Kaum hat es sich bei der Neutralisation in Retos Magen gebildet, fällt es auch schon auseinander. Einfach so.(*)
Dabei entstehen Wasser und das schon bekannte Gas Kohlendioxid. Und letzteres hat im Magen nichts zu suchen. Geschweige denn Platz. So muss Reto notgedrungen rülpsen, um das überflüssige Gas auf schnellstem Wege loszuwerden. Lilli ist begeistert: Noch mehr CO2-Ausstoss. Geht aber nicht anders, denn bei einer Zerfallsreaktion zerfällt ein grosses Molekül in zwei oder mehr kleinere Bruchstücke.
(*) Okay, nicht wirklich einfach so. Tatsächlich ist diese Reaktion Teil eines Systems im chemischen Gleichgewicht. Mehr dazu hat mir Monsieur Le Châtelier neulich auf dem Flughafen verraten.
4. Komplex-Reaktion: Bitte lächeln!
Während der zweite Gang auf dem Grillrost brutzelt beschliessen wir, dass es Zeit für ein Gruppenfoto ist. Alle stellen sich auf… und machen grosse Augen, als Andi eine wirklich altmodisch anmutende Kamera bereitmacht. Andi ist nämlich Hobby-Fotograf und entwickelt seine Schwarzweiss-Aufnahmen im hauseigenen Fotolabor mit Dunkelkammer.
In seinem Fotopapier sind Silberionen, Ag+, enthalten, die mit Licht zu Silberatomen reagieren, welche das Papier schwarz färben. Damit man die Fotos nachher jedoch bei Licht ansehen kann, ohne dass das ganze Bild schwarz wird, müssen die Silberionen, die nach dem Entwickeln nicht reagiert haben, noch in der Dunkelkammer ‚unschädlich‘ gemacht werden. Andi nennt das ‚Fixieren‘.
Dazu nimmt er eine Lösung, die Thiosulfat-Ionen, S2O32-, enthält, welche mit den Silberionen zu einem neuen Teilchen reagieren:
Anders als Silberionen reagieren die neuen Teilchen nicht zu Silberatomen, sodass Andis Fotos damit nicht mehr schwarz werden.
Das Besondere an diesen Teilchen ist, dass die Thiosulfat-Ionen ganz allein mit ihren Elektronen für die Bindung an das Silber aufkommen. In gewöhnlichen Molekülen teilen die Atome den Einsatz von Elektronen für ihre Bindungen gerecht untereinander auf. Eine solche ungerechte Verbindung nennen die Chemiker „Komplex-Verbindung“ und schreiben die Formel in eckige Klammern. Eine Komplex-Reaktion ist eine Reaktion, an der mindestens eine Komplex-Verbindung beteiligt ist.
5. Fällungs-Reaktion: Trübe Aussichten
Lächeln macht durstig, und Grillparty feiern erst recht. Also greift Dominik in die Kühlbox und zaubert für jeden eine Flasche Bier hervor. Aber oh Schreck, was ist denn das? Das Bier ist ja ganz trüb!
Da sind wir wohl Opfer einer weiteren chemischen Reaktion geworden. Beim Bierbrauen gerät nämlich mit den Zutaten ein Stoff namens Oxalat ins Bier, welcher in grösseren Mengen der Gesundheit schadet und besonders von Leuten mit Hang zu Nierensteinen gefürchtet wird. Deshalb brauen Bierhersteller stets mit ausreichend hartem, also Calciumionen- (Ca2+) haltigem Wasser. Denn Calciumionen reagieren mit dem Oxalat (C2O42-) zu Calciumoxalat, welches sich nicht in Wasser löst:
Calciumoxalat ist ein Feststoff und entsteht zunächst als feiner Staub, der das Bier trübt. Wenn aber mehr davon entsteht, sinkt es irgendwann auf den Boden des Bier-Gefässes. Chemiker sagen „es fällt aus“. Bei einer Fällungsreaktion entsteht in einer Lösung ein Feststoff. Dieser Feststoff fällt aus der Lösung aus.
Deshalb giessen Bierbrauer ihr Bier nach dem Ausfällen des Calciumoxalats durch einen Filter, in dem der Feststoff hängenbleibt. Damit braucht sich kein Freund von klarem Bier Sorgen wegen Nierensteinen zu machen.
Und warum ist unser Bier dann trüb?
Ganz einfach: Die meisten Fällungsreaktionen laufen besser ab, je kälter die Lösung ist. In unserem Bier war wohl noch ein kleiner Rest Oxalat und Calcium, und als Dominik das Bier in die Kühlbox gepackt hat, ist dieser Rest in der Kälte nachträglich noch ausgefallen. Aber so ein wenig Oxalat schadet uns nicht. Wir können das Bier also beruhigt geniessen.
Auf unserer Grillparty gibt es aber noch mehr zu entdecken. Denn in der Organischen Chemie, die für viele Vorgänge in Lebewesen von grosser Bedeutung ist, gibt es drei weitere grundlegende Reaktionen. Und Lebewesen sind schliesslich unglaublich spannend. Deshalb erzähle ich in Teil 2, wo wir diese Reaktionen entdeckt haben – und warum wir alle einer Vergiftung entgangen sind.
[1] Stieger, M. (2010). Elemente – Grundlagen der Chemie für Schweizer Maturitätsschulen (1. Auflage). Zug: Klett und Balmer
also ich hab mich ja immer für eine totale Nulpe der Naturwissenschaften gehalten, aber dank Deiner großartig verständlichen Texte, verstehe ich sogar chemische Abläufe 😉 Großartig, wie du alltägliche Situation (wie z.B. auch die Sache mit dem Kater) in einen verständlichen, humorvollen Kontext bringst!
Viele Grüße
Catharina (annemariebloggt.de)